Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Import Pandas:
import pandas as pd
Code #1 : read_csv is an important pandas function to read csv files and do operations on it.
# Import pandas import pandas as pd # reading csv file pd.read_csv( "filename.csv" ) |
Opening a CSV file through this is easy. But there are many others thing one can do through this function only to change the returned object completely. For instance, one can read a csv file not only locally, but from a URL through read_csv or one can choose what columns needed to export so that we don’t have to edit the array later.
Here is the list of parameters it takes with their Default values.
pd.read_csv(filepath_or_buffer, sep=’, ‘, delimiter=None, header=’infer’, names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, iterator=False, chunksize=None, compression=’infer’, thousands=None, decimal=b’.’, lineterminator=None, quotechar='”‘, quoting=0, escapechar=None, comment=None, encoding=None, dialect=None, tupleize_cols=None, error_bad_lines=True, warn_bad_lines=True, skipfooter=0, doublequote=True, delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None)
/blockquote>Not all of them are much important but remembering these actually save time of performing same functions on own. One can see parameters of any function by pressing shift + tab in jupyter notebook. Useful ones are given below with their usage :
Parameter Use filepath_or_buffer URL or Dir location of file sep Stands for seperator, default is ‘, ‘ as in csv(comma seperated values) index_col Makes passed column as index instead of 0, 1, 2, 3…r
![]()
header Makes passed row/s[int/int list] as header
![]()
use_cols Only uses the passed col[string list] to make data frame squeeze If true and only one column is passed, returns pandas series skiprows Skips passed rows in new data frame Refer the link to data set used from here.
Code #2 :
# importing Pandas library
import
pandas as pd
pd.read_csv(filepath_or_buffer
=
"pokemon.csv"
)
# makes the passed rows header
pd.read_csv(
"pokemon.csv"
, header
=
[
1
,
2
])
# make the passed column as index instead of 0, 1, 2, 3....
pd.read_csv(
"pokemon.csv"
, index_col
=
'Type'
)
# uses passed cols only for data frame
pd.read_csv(
"pokemon.csv"
, usecols
=
[
"Type"
])
# reutruns pandas series if there is only one colunmn
pd.read_csv(
"pokemon.csv"
, usecols
=
[
"Type"
],
squeeze
=
True
)
# skips the passed rows in new series
pd.read_csv(
"pokemon.csv"
,
skiprows
=
[
1
,
2
,
3
,
4
])
leave a comment
0 Comments