Python in its language allows various mathematical operations, which has manifolds application in scientific domain. One such offering of Python is the inbuilt ** gamma()** function, which numerically computes the gamma value of the number that is passed in the function.

Syntax :math.gamma(x)

Parameters :

x :The number whose gamma value needs to be computed.

Returns :The gamma value, which is numerically equal to “factorial(x-1)”.

**Code #1 : ** Demonstrating the working of gamma()

`# Python code to demonstrate ` `# working of gamma() ` `import` `math ` ` ` `# initializing argument ` `gamma_var ` `=` `6` ` ` `# Printing the gamma value. ` `print` `(` `"The gamma value of the given argument is : "` ` ` `+` `str` `(math.gamma(gamma_var))) ` |

**Output:**

The gamma value of the given argument is : 120.0

**factorial() vs gamma()**

The gamma value can also be found using `factorial(x-1)`

, but the use case of `gamma()`

is because, if we compare both the function to achieve the similar task, `gamma()`

offers better performance.

**Code #2 : ** Comparing `factorial()`

and `gamma()`

`# Python code to demonstrate ` `# factorial() vs gamma() ` `import` `math ` `import` `time ` ` ` `# initializing argument ` `gamma_var ` `=` `6` ` ` `# checking performance ` `# gamma() vs factorial() ` `start_fact ` `=` `time.time() ` `res_fact ` `=` `math.factorial(gamma_var` `-` `1` `) ` ` ` `print` `(` `"The gamma value using factorial is : "` ` ` `+` `str` `(res_fact)) ` ` ` `print` `(` `"The time taken to compute is : "` ` ` `+` `str` `(time.time() ` `-` `start_fact)) ` ` ` `print` `(` ```
'
'
``` `) ` ` ` `start_gamma ` `=` `time.time() ` `res_gamma ` `=` `math.gamma(gamma_var) ` ` ` `print` `(` `"The gamma value using gamma() is : "` ` ` `+` `str` `(res_gamma)) ` ` ` `print` `(` `"The time taken to compute is : "` ` ` `+` `str` `(time.time() ` `-` `start_gamma)) ` |

**Output:**

The gamma value using factorial is : 120 The time taken to compute is : 9.059906005859375e-06 The gamma value using gamma() is : 120.0 The time taken to compute is : 5.245208740234375e-06

## leave a comment

## 0 Comments