Tutorialspoint.dev

Complex numbers in C++ | Set 1

The complex library implements the complex class to contain complex numbers in cartesian form and several functions and overloads to operate with them.
complex2

  • real() – It returns the real part of the complex number.
  • imag() – It returns the imaginary part of the complex number.
    // Program illustrating the use of real() and 
    // imag() function
    #include <iostream>     
      
    // for std::complex, std::real, std::imag
    #include <complex>      
    using namespace std;
      
    // driver function
    int main()
    {    
      // defines the complex number: (10 + 2i)
      std::complex<double> mycomplex(10.0, 2.0);
      
      // prints the real part using the real function
      cout << "Real part: " << real(mycomplex) << endl;
      cout << "Imaginary part: " << imag(mycomplex) << endl;
      return 0;
    }

    Output:

    Real part: 10
    Imaginary part: 2
    
  • abs() – It returns the absolute of the complex number.
  • arg() – It returns the argument of the complex number.
    // Program illustrating the use of arg() and abs()
    #include <iostream>     
      
    // for std::complex, std::abs, std::atg
    #include <complex> 
    using namespace std;
      
    // driver function
    int main ()
    {    
      // defines the complex number: (3.0+4.0i)
      std::complex<double> mycomplex (3.0, 4.0);
      
      // prints the absolute value of the complex number
      cout << "The absolute value of " << mycomplex << " is: ";
      cout << abs(mycomplex) << endl;
        
      // prints the argument of the complex number
      cout << "The argument of " << mycomplex << " is: ";
      cout << arg(mycomplex) << endl;
      
      return 0;
    }

    Output:

    The absolute value of (3,4) is: 5
    The argument of (3,4) is: 0.927295
    
  • polar() – It constructs a complex number from magnitude and phase angle.

    real = magnitude*cosine(phase angle)
    imaginary = magnitude*sine(phase angle)

    // Program illustrating the use of polar()
    #include <iostream>     
      
    // std::complex, std::polar
    #include <complex>
    using namespace std;
      
    // driver function
    int main ()
    {
      cout << "The complex whose magnitude is " << 2.0;
      cout << " and phase angle is " << 0.5;
        
      // use of polar()
      cout << " is " << polar (2.0, 0.5) << endl;
      
      return 0;
    }

    Output:



    The complex whose magnitude is 2 and phase angle is 0.5 is (1.75517,0.958851)
    
  • norm() – It is used to find the norm(absolute value) of the complex number. If z = x + iy is a complex number with real part x and imaginary part y, the complex conjugate of z is defined as z'(z bar) = x – iy, and the absolute value, also called the norm, of z is defined as :
    complex-2

    // example to illustrate the use of norm()
    #include <iostream>     
      
    // for std::complex, std::norm
    #include <complex> 
    using namespace std;
      
    // driver function
    int main ()
    {    
      // initializing the complex: (3.0+4.0i)
      std::complex<double> mycomplex (3.0, 4.0);
      
      // use of norm()
      cout << "The norm of " << mycomplex << " is " 
           << norm(mycomplex) <<endl;
      
      return 0;
    }

    Output:

    The norm of (3,4) is 25.
    
  • conj() – It returns the conjugate of the complex number x. The conjugate of a complex number (real,imag) is (real,-imag).
    // Illustrating the use of conj()
    #include <iostream> 
    using namespace std;
      
    // std::complex, std::conj
    #include <complex>      
      
    // driver program
    int main ()
    {
      std::complex<double> mycomplex (10.0,2.0);
      
      cout << "The conjugate of " << mycomplex << " is: ";
        
      // use of conj()
      cout << conj(mycomplex) << endl;
      return 0;
    }

    Output:

     The conjugate of (10,2) is (10,-2)
    
  • proj() – It returns the projection of z(complex number) onto the Riemann sphere. The projection of z is z, except for complex infinities, which are mapped to the complex value with a real component of INFINITY and an imaginary component of 0.0 or -0.0 (where supported), depending on the sign of the imaginary component of z.
    // Illustrating the use of proj()
      
    #include <iostream>
    using namespace std;
      
    // For std::complex, std::proj
    #include <complex>
       
    // driver program
    int main()
    {
        std::complex<double> c1(1, 2);
        cout << "proj" << c1 << " = " << proj(c1) << endl;
       
        std::complex<double> c2(INFINITY, -1);
        cout << "proj" << c2 << " = " << proj(c2) << endl;
       
        std::complex<double> c3(0, -INFINITY);
        cout << "proj" << c3 << " = " << proj(c3) << endl;
    }

    Output:

    proj(1,2) = (1,2)
    proj(inf,-1) = (inf,-0)
    proj(0,-inf) = (inf,-0)
    
  • sqrt() – Returns the square root of x using the principal branch, whose cuts are along the negative real axis.
    // Illustrating the use of sqrt()
    #include <iostream>
    using namespace std;
      
    // For std::ccomplex, stdc::sqrt
    #include <complex>
       
    // driver program
    int main()
    {    
        // use of sqrt()
        cout << "Square root of -4 is "
             << sqrt(std::complex<double>(-4, 0)) << endl
             << "Square root of (-4,-0), the other side of the cut, is "
             << sqrt(std::complex<double>(-4, -0.0)) << endl;
    }

    Output:

    Square root of -4 is (0,2)
    Square root of (-4,-0), the other side of the cut, is (0,-2)
    

Next article: Complex numbers in C++ | Set 2

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



This article is attributed to GeeksforGeeks.org

leave a comment

code

0 Comments

load comments

Subscribe to Our Newsletter