Given a stack, sort it using recursion. Use of any loop constructs like while, for..etc is not allowed. We can only use the following ADT functions on Stack S:
is_empty(S) : Tests whether stack is empty or not. push(S) : Adds new element to the stack. pop(S) : Removes top element from the stack. top(S) : Returns value of the top element. Note that this function does not remove element from the stack.
Example:
Input: -3 <--- Top 14 18 -5 30 Output: 30 <--- Top 18 14 -3 -5
This problem is mainly a variant of Reverse stack using recursion.
The idea of the solution is to hold all values in Function Call Stack until the stack becomes empty. When the stack becomes empty, insert all held items one by one in sorted order. Here sorted order is important.
Algorithm
We can use below algorithm to sort stack elements:
sortStack(stack S) if stack is not empty: temp = pop(S); sortStack(S); sortedInsert(S, temp);
Below algorithm is to insert element is sorted order:
sortedInsert(Stack S, element) if stack is empty OR element > top element push(S, elem) else temp = pop(S) sortedInsert(S, element) push(S, temp)
Illustration:
Let given stack be -3 <-- top of the stack 14 18 -5 30
Let us illustrate sorting of stack using above example:
First pop all the elements from the stack and store poped element in variable ‘temp’. After poping all the elements function’s stack frame will look like:
temp = -3 --> stack frame #1 temp = 14 --> stack frame #2 temp = 18 --> stack frame #3 temp = -5 --> stack frame #4 temp = 30 --> stack frame #5
Now stack is empty and ‘insert_in_sorted_order()’ function is called and it inserts 30 (from stack frame #5) at the bottom of the stack. Now stack looks like below:
30 <-- top of the stack
Now next element i.e. -5 (from stack frame #4) is picked. Since -5 < 30, -5 is inserted at the bottom of stack. Now stack becomes:
30 <-- top of the stack -5
Next 18 (from stack frame #3) is picked. Since 18 < 30, 18 is inserted below 30. Now stack becomes:
30 <-- top of the stack 18 -5
Next 14 (from stack frame #2) is picked. Since 14 < 30 and 14 < 18, it is inserted below 18. Now stack becomes:
30 <-- top of the stack 18 14 -5
Now -3 (from stack frame #1) is picked, as -3 < 30 and -3 < 18 and -3 < 14, it is inserted below 14. Now stack becomes:
30 <-- top of the stack 18 14 -3 -5
Implementation:
Below is the implementation of above algorithm.
C
// C program to sort a stack using recursion #include <stdio.h> #include <stdlib.h> // Stack is represented using linked list struct stack { int data; struct stack *next; }; // Utility function to initialize stack void initStack( struct stack **s) { *s = NULL; } // Utility function to chcek if stack is empty int isEmpty( struct stack *s) { if (s == NULL) return 1; return 0; } // Utility function to push an item to stack void push( struct stack **s, int x) { struct stack *p = ( struct stack *) malloc ( sizeof (*p)); if (p == NULL) { fprintf (stderr, "Memory allocation failed.
" ); return ; } p->data = x; p->next = *s; *s = p; } // Utility function to remove an item from stack int pop( struct stack **s) { int x; struct stack *temp; x = (*s)->data; temp = *s; (*s) = (*s)->next; free (temp); return x; } // Function to find top item int top( struct stack *s) { return (s->data); } // Recursive function to insert an item x in sorted way void sortedInsert( struct stack **s, int x) { // Base case: Either stack is empty or newly inserted // item is greater than top (more than all existing) if (isEmpty(*s) || x > top(*s)) { push(s, x); return ; } // If top is greater, remove the top item and recur int temp = pop(s); sortedInsert(s, x); // Put back the top item removed earlier push(s, temp); } // Function to sort stack void sortStack( struct stack **s) { // If stack is not empty if (!isEmpty(*s)) { // Remove the top item int x = pop(s); // Sort remaining stack sortStack(s); // Push the top item back in sorted stack sortedInsert(s, x); } } // Utility function to print contents of stack void printStack( struct stack *s) { while (s) { printf ( "%d " , s->data); s = s->next; } printf ( "
" ); } // Driver Program int main( void ) { struct stack *top; initStack(&top); push(&top, 30); push(&top, -5); push(&top, 18); push(&top, 14); push(&top, -3); printf ( "Stack elements before sorting:
" ); printStack(top); sortStack(&top); printf ( "
" ); printf ( "Stack elements after sorting:
" ); printStack(top); return 0; } |
Java
// Java program to sort a Stack using recursion // Note that here predefined Stack class is used // for stack operation import java.util.ListIterator; import java.util.Stack; class Test { // Recursive Method to insert an item x in sorted way static void sortedInsert(Stack<Integer> s, int x) { // Base case: Either stack is empty or newly inserted // item is greater than top (more than all existing) if (s.isEmpty() || x > s.peek()) { s.push(x); return ; } // If top is greater, remove the top item and recur int temp = s.pop(); sortedInsert(s, x); // Put back the top item removed earlier s.push(temp); } // Method to sort stack static void sortStack(Stack<Integer> s) { // If stack is not empty if (!s.isEmpty()) { // Remove the top item int x = s.pop(); // Sort remaining stack sortStack(s); // Push the top item back in sorted stack sortedInsert(s, x); } } // Utility Method to print contents of stack static void printStack(Stack<Integer> s) { ListIterator<Integer> lt = s.listIterator(); // forwarding while (lt.hasNext()) lt.next(); // printing from top to bottom while (lt.hasPrevious()) System.out.print(lt.previous()+ " " ); } // Driver method public static void main(String[] args) { Stack<Integer> s = new Stack<>(); s.push( 30 ); s.push(- 5 ); s.push( 18 ); s.push( 14 ); s.push(- 3 ); System.out.println( "Stack elements before sorting: " ); printStack(s); sortStack(s); System.out.println( "
Stack elements after sorting:" ); printStack(s); } } |
C#
// C# program to sort a Stack using recursion // Note that here predefined Stack class is used // for stack operation using System; using System.Collections; public class GFG { // Recursive Method to insert an item x in sorted way static void sortedInsert(Stack s, int x) { // Base case: Either stack is empty or // newly inserted item is greater than top // (more than all existing) if (s.Count == 0 || x > ( int )s.Peek()) { s.Push(x); return ; } // If top is greater, remove // the top item and recur int temp = ( int ) s.Peek(); s.Pop(); sortedInsert(s, x); // Put back the top item removed earlier s.Push(temp); } // Method to sort stack static void sortStack(Stack s) { // If stack is not empty if (s.Count > 0) { // Remove the top item int x = ( int )s.Peek(); s.Pop(); // Sort remaining stack sortStack(s); // Push the top item back in sorted stack sortedInsert(s, x); } } // Utility Method to print contents of stack static void printStack(Stack s) { foreach ( int c in s) { Console.Write(c + " " ); } } // Driver method public static void Main(String[] args) { Stack s = new Stack(); s.Push(30); s.Push(-5); s.Push(18); s.Push(14); s.Push(-3); Console.WriteLine( "Stack elements before sorting: " ); printStack(s); sortStack(s); Console.WriteLine( "
Stack elements after sorting:" ); printStack(s); } } // This code is Contibuted by Arnab Kundu |
Output:
Stack elements before sorting: -3 14 18 -5 30 Stack elements after sorting: 30 18 14 -3 -5
Exercise: Modify above code to reverse stack in descending order.
leave a comment
0 Comments