Given a 2D matrix, the task is that we find maximum sum of a hour glass.
An hour glass is made of 7 cells in following form. A B C D E F G
Examples:
Input : 1 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 Output : 7 Below is the hour glass with maximum sum: 1 1 1 1 1 1 1 Input : 0 3 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 2 4 4 0 0 0 2 4 Output : 11 Below is the hour glass wuth maximum sum 1 0 0 4 0 2 4
It is evident from definition of hour glass that number of rows and number of columns must be greater than 3. If we count total number of hour glasses in a matrix, we can say that the count is equal to count of possible top left cells in hour glass. Number of top-left cells in a hour glass is equal to (R-2)*(C-2). Therefore, in a matrix total number of hour glass is (R-2)*(C-2)
mat[][] = 2 3 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 2 4 4 0 0 0 2 0 Possible hour glass are : 2 3 0 3 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 2 0 2 4 2 4 4 1 1 1 1 1 0 1 0 0 0 2 4 0 0 0 0 0 2 0 2 0
We consider all top left cells of hour glasses one by one. For every cell, we compute sum of hour glass formed by it. Finally we return maximum sum.
Below is the implementation of above idea :
C++
// C++ program to find maximum sum of hour // glass in matrix #include<bits/stdc++.h> using namespace std; const int R = 5; const int C = 5; // Returns maximum sum of hour glass in ar[][] int findMaxSum( int mat[R][C]) { if (R<3 || C<3) return -1; // Here loop runs (R-2)*(C-2) times considering // different top left cells of hour glasses. int max_sum = INT_MIN; for ( int i=0; i<R-2; i++) { for ( int j=0; j<C-2; j++) { // Considering mat[i][j] as top left cell of // hour glass. int sum = (mat[i][j]+mat[i][j+1]+mat[i][j+2])+ (mat[i+1][j+1])+ (mat[i+2][j]+mat[i+2][j+1]+mat[i+2][j+2]); // If previous sum is less then current sum then // update new sum in max_sum max_sum = max(max_sum, sum); } } return max_sum; } // Driver code int main() { int mat[][C] = {{1, 2, 3, 0, 0}, {0, 0, 0, 0, 0}, {2, 1, 4, 0, 0}, {0, 0, 0, 0, 0}, {1, 1, 0, 1, 0}}; int res = findMaxSum(mat); if (res == -1) cout << "Not possible" << endl; else cout << "Maximum sum of hour glass = " << res << endl; return 0; } |
Java
// Java program to find maximum // sum of hour glass in matrix import java.io.*; class GFG { static int R = 5 ; static int C = 5 ; // Returns maximum sum of // hour glass in ar[][] static int findMaxSum( int [][]mat) { if (R < 3 || C < 3 ) return - 1 ; // Here loop runs (R-2)*(C-2) // times considering different // top left cells of hour glasses. int max_sum = Integer.MIN_VALUE; for ( int i = 0 ; i < R - 2 ; i++) { for ( int j = 0 ; j < C - 2 ; j++) { // Considering mat[i][j] as top // left cell of hour glass. int sum = (mat[i][j] + mat[i][j + 1 ] + mat[i][j + 2 ]) + (mat[i + 1 ][j + 1 ]) + (mat[i + 2 ][j] + mat[i + 2 ][j + 1 ] + mat[i + 2 ][j + 2 ]); // If previous sum is less then // current sum then update // new sum in max_sum max_sum = Math.max(max_sum, sum); } } return max_sum; } // Driver code static public void main (String[] args) { int [][]mat = {{ 1 , 2 , 3 , 0 , 0 }, { 0 , 0 , 0 , 0 , 0 }, { 2 , 1 , 4 , 0 , 0 }, { 0 , 0 , 0 , 0 , 0 }, { 1 , 1 , 0 , 1 , 0 }}; int res = findMaxSum(mat); if (res == - 1 ) System.out.println( "Not possible" ); else System.out.println( "Maximum sum of hour glass = " + res); } } // This code is contributed by vt_m . |
C#
// C# program to find maximum // sum of hour glass in matrix using System; class GFG { static int R = 5; static int C = 5; // Returns maximum sum of // hour glass in ar[][] static int findMaxSum( int [,]mat) { if (R < 3 || C < 3) return -1; // Here loop runs (R-2)*(C-2) // times considering different // top left cells of hour glasses. int max_sum = int .MinValue; for ( int i = 0; i < R - 2; i++) { for ( int j = 0; j < C - 2; j++) { // Considering mat[i][j] as top // left cell of hour glass. int sum = (mat[i, j] + mat[i, j + 1] + mat[i, j + 2]) + (mat[i + 1, j + 1]) + (mat[i + 2, j] + mat[i + 2, j + 1] + mat[i + 2, j + 2]); // If previous sum is less then // current sum then update // new sum in max_sum max_sum = Math.Max(max_sum, sum); } } return max_sum; } // Driver code static public void Main(String[] args) { int [,]mat = {{1, 2, 3, 0, 0}, {0, 0, 0, 0, 0}, {2, 1, 4, 0, 0}, {0, 0, 0, 0, 0}, {1, 1, 0, 1, 0}}; int res = findMaxSum(mat); if (res == -1) Console.WriteLine( "Not possible" ); else Console.WriteLine( "Maximum sum of hour glass = " + res); } } // This code is contributed by vt_m . |
PHP
<?php // PHP program to find maximum sum // of hour glass in matrix $R = 5; $C = 5; // Returns maximum sum // of hour glass in ar[][] function findMaxSum( $mat ) { global $R ; global $C ; if ( $R < 3 || $C < 3) return -1; // Here loop runs (R-2)*(C-2) times considering // different top left cells of hour glasses. $max_sum = PHP_INT_MIN; for ( $i = 0; $i < ( $R - 2); $i ++) { for ( $j = 0; $j < ( $C - 2); $j ++) { // Considering mat[i][j] as // top left cell of hour glass. $sum = ( $mat [ $i ][ $j ] + $mat [ $i ][ $j + 1] + $mat [ $i ][ $j + 2]) + ( $mat [ $i + 1][ $j + 1]) + ( $mat [ $i + 2][ $j ] + $mat [ $i + 2][ $j + 1] + $mat [ $i + 2][ $j + 2]); // If previous sum is less than current sum // then update new sum in max_sum $max_sum = max( $max_sum , $sum ); } } return $max_sum ; } // Driver code $mat = array ( array (1, 2, 3, 0, 0), array (0, 0, 0, 0, 0), array (2, 1, 4, 0, 0), array (0, 0, 0, 0, 0), array (1, 1, 0, 1, 0)); $res = findMaxSum( $mat ); if ( $res == -1) echo "Not possible" , "
" ; else echo "Maximum sum of hour glass = " , $res , "
" ; // This code is contributed by ajit. ?> |
Output:
Maximum sum of hour glass = 13
Reference :
http://stackoverflow.com/questions/38019861/hourglass-sum-in-2d-array
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
leave a comment
0 Comments