Given a Binary Tree where all values are from 0 to n-1. Construct an ancestor matrix mat[n][n]. Ancestor matrix is defined as below.
mat[i][j] = 1 if i is ancestor of j mat[i][j] = 0, otherwise
Examples:
Input: Root of below Binary Tree. 0 / 1 2 Output: 0 1 1 0 0 0 0 0 0 Input: Root of below Binary Tree. 5 / 1 2 / / 0 4 3 Output: 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0
We strongly recommend you to minimize your browser and try this yourself first.
The idea is to traverse the tree. While traversing, keep track of ancestors in an array. When we visit a node, we add it to ancestor array and consider corresponding row in adjacency matrix. We mark all ancestors in its row as 1. Once a node and all its children are processed, we remove the node from ancestor array.
Below is the implementation of above idea.
C++
// C++ program to construct ancestor matrix for // given tree. #include<bits/stdc++.h> using namespace std; #define MAX 100 /* A binary tree node */ struct Node { int data; Node *left, *right; }; // Creating a global boolean matrix for simplicity bool mat[MAX][MAX]; // anc[] stores all ancestors of current node. This // function fills ancestors for all nodes. // It also returns size of tree. Size of tree is // used to print ancestor matrix. int ancestorMatrixRec(Node *root, vector< int > &anc) { /* base case */ if (root == NULL) return 0;; // Update all ancestors of current node int data = root->data; for ( int i=0; i<anc.size(); i++) mat[anc[i]][data] = true ; // Push data to list of ancestors anc.push_back(data); // Traverse left and right subtrees int l = ancestorMatrixRec(root->left, anc); int r = ancestorMatrixRec(root->right, anc); // Remove data from list the list of ancestors // as all descendants of it are processed now. anc.pop_back(); return l+r+1; } // This function mainly calls ancestorMatrixRec() void ancestorMatrix(Node *root) { // Create an empty ancestor array vector< int > anc; // Fill ancestor matrix and find size of // tree. int n = ancestorMatrixRec(root, anc); // Print the filled values for ( int i=0; i<n; i++) { for ( int j=0; j<n; j++) cout << mat[i][j] << " " ; cout << endl; } } /* Helper function to create a new node */ Node* newnode( int data) { Node* node = new Node; node->data = data; node->left = node->right = NULL; return (node); } /* Driver program to test above functions*/ int main() { /* Construct the following binary tree 5 / 1 2 / / 0 4 3 */ Node *root = newnode(5); root->left = newnode(1); root->right = newnode(2); root->left->left = newnode(0); root->left->right = newnode(4); root->right->left = newnode(3); ancestorMatrix(root); return 0; } |
Java
// Java Program to construct ancestor matrix for a given tree import java.util.*; class GFG { // ancestorMatrix function to populate the matrix of public static void ancestorMatrix(Node root , int matrix[][], int size) { // base case: if (root== null ) return ; // call recursively for a preorder {left} ancestorMatrix(root.left, matrix, size); // call recursively for preorder {right} ancestorMatrix(root.right, matrix, size); // here we will reach the root node automatically // try solving on pen and paper if (root.left != null ) { // make the current node as parent of its children node matrix[root.data][root.left.data] = 1 ; // iterate through all the columns of children node // all nodes which are children to // children of root node will also // be children of root node for ( int i = 0 ; i < size; i++) { // if children of root node is a parent // of someone (i.e 1) then make that node // as children of root also if (matrix[root.left.data][i] == 1 ) matrix[root.data][i] = 1 ; } } // same procedure followed for right node as well if (root.right != null ) { matrix[root.data][root.right.data] = 1 ; for ( int i = 0 ; i < size; i++) { if (matrix[root.right.data][i]== 1 ) matrix[root.data][i] = 1 ; } } } // Driver program to test the program public static void main(String[] args) { // construct the binary tree as follows Node tree_root = new Node( 5 ); tree_root.left = new Node ( 1 ); tree_root.right = new Node( 2 ); tree_root.left.left = new Node( 0 ); tree_root.left.right = new Node( 4 ); tree_root.right.left = new Node( 3 ); // size of matrix int size = 6 ; int matrix [][] = new int [size][size]; ancestorMatrix(tree_root, matrix, size); for ( int i = 0 ; i < size; i++) { for ( int j = 0 ; j < size; j++) { System.out.print(matrix[i][j]+ " " ); } System.out.println(); } } // node class for tree node static class Node { public int data ; public Node left ,right; public Node ( int data) { this .data = data; this .left = this .right = null ; } } } // This code is contributed by Sparsh Singhal |
Python3
# Python3 program to construct ancestor # matrix for given tree. class newnode: def __init__( self , data): self .data = data self .left = self .right = None # anc[] stores all ancestors of current node. # This function fills ancestors for all nodes. # It also returns size of tree. Size of tree # is used to print ancestor matrix. def ancestorMatrixRec(root, anc): global mat, MAX # base case if root = = None : return 0 # Update all ancestors of current node data = root.data for i in range ( len (anc)): mat[anc[i]][data] = 1 # Push data to list of ancestors anc.append(data) # Traverse left and right subtrees l = ancestorMatrixRec(root.left, anc) r = ancestorMatrixRec(root.right, anc) # Remove data from list the list of ancestors # as all descendants of it are processed now. anc.pop( - 1 ) return l + r + 1 # This function mainly calls ancestorMatrixRec() def ancestorMatrix(root): # Create an empty ancestor array anc = [] # Fill ancestor matrix and find # size of tree. n = ancestorMatrixRec(root, anc) # Print the filled values for i in range (n): for j in range (n): print (mat[i][j], end = " " ) print () # Driver Code MAX = 100 mat = [[ 0 ] * MAX for i in range ( MAX )] # Construct the following binary tree # 5 # / # 1 2 # / / # 0 4 3 root = newnode( 5 ) root.left = newnode( 1 ) root.right = newnode( 2 ) root.left.left = newnode( 0 ) root.left.right = newnode( 4 ) root.right.left = newnode( 3 ) ancestorMatrix(root) # This code is contributed by PranchalK |
C#
// C# Program to construct ancestor matrix for a given tree using System; class GFG { // ancestorMatrix function to populate the matrix of public static void ancestorMatrix(Node root, int [,]matrix, int size) { // base case: if (root == null ) { return ; } // call recursively for a preorder {left} ancestorMatrix(root.left, matrix, size); // call recursively for preorder {right} ancestorMatrix(root.right, matrix, size); // here we will reach the root node automatically // try solving on pen and paper if (root.left != null ) { // make the current node as parent of its children node matrix[root.data,root.left.data] = 1; // iterate through all the columns of children node // all nodes which are children to // children of root node will also // be children of root node for ( int i = 0; i < size; i++) { // if children of root node is a parent // of someone (i.e 1) then make that node // as children of root also if (matrix[root.left.data,i] == 1) { matrix[root.data,i] = 1; } } } // same procedure followed for right node as well if (root.right != null ) { matrix[root.data,root.right.data] = 1; for ( int i = 0; i < size; i++) { if (matrix[root.right.data,i] == 1) { matrix[root.data,i] = 1; } } } } // Driver code public static void Main(String[] args) { // construct the binary tree as follows Node tree_root = new Node(5); tree_root.left = new Node(1); tree_root.right = new Node(2); tree_root.left.left = new Node(0); tree_root.left.right = new Node(4); tree_root.right.left = new Node(3); // size of matrix int size = 6; int [,]matrix = new int [size,size]; ancestorMatrix(tree_root, matrix, size); for ( int i = 0; i < size; i++) { for ( int j = 0; j < size; j++) { Console.Write(matrix[i,j] + " " ); } Console.WriteLine(); } } // node class for tree node public class Node { public int data; public Node left, right; public Node( int data) { this .data = data; this .left = this .right = null ; } } } // This code is contributed by 29AjayKumar |
Output:
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0
Time complexity of above solution is O(n2).
How to do reverse – construct tree from ancestor matrix?
Construct tree from ancestor matrix
leave a comment
0 Comments