# Merge two binary Max Heaps

Given two binary max heaps as arrays, merge the given heaps.

Examples :

```Input  : a = {10, 5, 6, 2},
b = {12, 7, 9}
Output : {12, 10, 9, 2, 5, 7, 6}

```

The idea is simple. We create an array to store result. We copy both given arrays one by one to result. Once we have copied all elements, we call standard build heap to construct full merged max heap.

## C++

 `// C++ program to merge two max heaps. ` `#include ` `using` `namespace` `std; ` ` `  `// Standard heapify function to heapify a ` `// subtree rooted under idx. It assumes ` `// that subtrees of node are already heapified. ` `void` `maxHeapify(``int` `arr[], ``int` `n, ``int` `idx) ` `{ ` `    ``// Find largest of node and its children ` `    ``if` `(idx >= n) ` `        ``return``; ` `    ``int` `l = 2 * idx + 1; ` `    ``int` `r = 2 * idx + 2; ` `    ``int` `max; ` `    ``if` `(l < n && arr[l] > arr[idx]) ` `        ``max = l; ` `    ``else` `        ``max = idx; ` `    ``if` `(r < n && arr[r] > arr[max]) ` `        ``max = r; ` ` `  `    ``// Put maximum value at root and ` `    ``// recur for the child with the ` `    ``// maximum value ` `    ``if` `(max != idx) { ` `        ``swap(arr[max], arr[idx]); ` `        ``maxHeapify(arr, n, max); ` `    ``} ` `} ` ` `  `// Builds a max heap of given arr[0..n-1] ` `void` `buildMaxHeap(``int` `arr[], ``int` `n) ` `{ ` `    ``// building the heap from first non-leaf ` `    ``// node by calling max heapify function ` `    ``for` `(``int` `i = n / 2 - 1; i >= 0; i--) ` `        ``maxHeapify(arr, n, i); ` `} ` ` `  `// Merges max heaps a[] and b[] into merged[] ` `void` `mergeHeaps(``int` `merged[], ``int` `a[], ``int` `b[], ` `                ``int` `n, ``int` `m) ` `{ ` `    ``// Copy elements of a[] and b[] one by one ` `    ``// to merged[] ` `    ``for` `(``int` `i = 0; i < n; i++) ` `        ``merged[i] = a[i]; ` `    ``for` `(``int` `i = 0; i < m; i++) ` `        ``merged[n + i] = b[i]; ` ` `  `    ``// build heap for the modified array of ` `    ``// size n+m ` `    ``buildMaxHeap(merged, n + m); ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `a[] = { 10, 5, 6, 2 }; ` `    ``int` `b[] = { 12, 7, 9 }; ` ` `  `    ``int` `n = ``sizeof``(a) / ``sizeof``(a[0]); ` `    ``int` `m = ``sizeof``(b) / ``sizeof``(b[0]); ` ` `  `    ``int` `merged[m + n]; ` `    ``mergeHeaps(merged, a, b, n, m); ` ` `  `    ``for` `(``int` `i = 0; i < n + m; i++) ` `        ``cout << merged[i] << ``" "``; ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java program to merge two max heaps. ` ` `  `class` `GfG { ` ` `  `    ``// Standard heapify function to heapify a ` `    ``// subtree rooted under idx. It assumes ` `    ``// that subtrees of node are already heapified. ` `    ``public` `static` `void` `maxHeapify(``int``[] arr, ``int` `n, ` `                                             ``int` `i) ` `    ``{ ` `        ``// Find largest of node and its children ` `        ``if` `(i >= n) { ` `            ``return``; ` `        ``} ` `        ``int` `l = i * ``2` `+ ``1``; ` `        ``int` `r = i * ``2` `+ ``2``; ` `        ``int` `max; ` `        ``if` `(l < n && arr[l] > arr[i]) { ` `            ``max = l; ` `        ``} ` `        ``else` `            ``max = i; ` `        ``if` `(r < n && arr[r] > arr[max]) { ` `            ``max = r; ` `        ``} ` `         `  `        ``// Put maximum value at root and ` `        ``// recur for the child with the ` `        ``// maximum value ` `        ``if` `(max != i) { ` `            ``int` `temp = arr[max]; ` `            ``arr[max] = arr[i]; ` `            ``arr[i] = temp; ` `            ``maxHeapify(arr, n, max); ` `        ``} ` `    ``} ` `     `  `    ``// Merges max heaps a[] and b[] into merged[] ` `    ``public` `static` `void` `mergeHeaps(``int``[] arr, ``int``[] a,  ` `                                  ``int``[] b, ``int` `n, ``int` `m) ` `    ``{ ` `        ``for` `(``int` `i = ``0``; i < n; i++) { ` `            ``arr[i] = a[i]; ` `        ``} ` `        ``for` `(``int` `i = ``0``; i < m; i++) { ` `            ``arr[n + i] = b[i]; ` `        ``} ` `        ``n = n + m; ` ` `  `        ``// Builds a max heap of given arr[0..n-1] ` `        ``for` `(``int` `i = n / ``2` `- ``1``; i >= ``0``; i--) { ` `            ``maxHeapify(arr, n, i); ` `        ``} ` `    ``} ` `     `  `    ``// Driver Code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``int``[] a = {``10``, ``5``, ``6``, ``2``}; ` `        ``int``[] b = {``12``, ``7``, ``9``}; ` `        ``int` `n = a.length; ` `        ``int` `m = b.length; ` ` `  `        ``int``[] merged = ``new` `int``[m + n]; ` ` `  `        ``mergeHeaps(merged, a, b, n, m); ` ` `  `        ``for` `(``int` `i = ``0``; i < m + n; i++) ` `            ``System.out.print(merged[i] + ``" "``); ` `        ``System.out.println(); ` `    ``} ` `} `

/div>

## Python3

# Python3 program to merge two Max heaps.

# Standard heapify function to heapify a
# subtree rooted under idx. It assumes that
# subtrees of node are already heapified.
def MaxHeapify(arr, n, idx):

# Find largest of node and
# its children
if idx >= n:
return
l = 2 * idx + 1
r = 2 * idx + 2
Max = 0
if l < n and arr[l] > arr[idx]:
Max = l
else:
Max = idx
if r < n and arr[r] > arr[Max]:
Max = r

# Put Maximum value at root and
# recur for the child with the
# Maximum value
if Max != idx:
arr[Max], arr[idx] = arr[idx], arr[Max]
MaxHeapify(arr, n, Max)

# Builds a Max heap of given arr[0..n-1]
def buildMaxHeap(arr, n):

# building the heap from first non-leaf
# node by calling Max heapify function
for i in range(int(n / 2) – 1, -1, -1):
MaxHeapify(arr, n, i)

# Merges Max heaps a[] and b[] into merged[]
def mergeHeaps(merged, a, b, n, m):

# Copy elements of a[] and b[] one
# by one to merged[]
for i in range(n):
merged[i] = a[i]
for i in range(m):
merged[n + i] = b[i]

# build heap for the modified
# array of size n+m
buildMaxHeap(merged, n + m)

# Driver code
if __name__ == ‘__main__’:
a = [10, 5, 6, 2]
b = [12, 7, 9]

n = len(a)
m = len(b)

merged = [0] * (m + n)
mergeHeaps(merged, a, b, n, m)

for i in range(n + m):
print(merged[i], end = ” “)

# This code is contributed by PranchalK

## C#

 `// C# program to merge two max heaps. ` `using` `System; ` ` `  `class` `GfG { ` ` `  `    ``// Standard heapify function to heapify a ` `    ``// subtree rooted under idx. It assumes ` `    ``// that subtrees of node are already heapified. ` `    ``public` `static` `void` `maxHeapify(``int``[] arr, ` `                                  ``int` `n, ``int` `i) ` `    ``{ ` `        ``// Find largest of node ` `        ``// and its children ` `        ``if` `(i >= n) { ` `            ``return``; ` `        ``} ` `        ``int` `l = i * 2 + 1; ` `        ``int` `r = i * 2 + 2; ` `        ``int` `max; ` `        ``if` `(l < n && arr[l] > arr[i]) { ` `            ``max = l; ` `        ``} ` `        ``else` `            ``max = i; ` `        ``if` `(r < n && arr[r] > arr[max]) { ` `            ``max = r; ` `        ``} ` `         `  `        ``// Put maximum value at root and ` `        ``// recur for the child with the ` `        ``// maximum value ` `        ``if` `(max != i) { ` `            ``int` `temp = arr[max]; ` `            ``arr[max] = arr[i]; ` `            ``arr[i] = temp; ` `            ``maxHeapify(arr, n, max); ` `        ``} ` `    ``} ` ` `  `    ``// Merges max heaps a[] and b[] into merged[] ` `    ``public` `static` `void` `mergeHeaps(``int``[] arr, ``int``[] a, ` `                                  ``int``[] b, ``int` `n, ``int` `m) ` `    ``{ ` `        ``for` `(``int` `i = 0; i < n; i++) { ` `            ``arr[i] = a[i]; ` `        ``} ` `        ``for` `(``int` `i = 0; i < m; i++) { ` `            ``arr[n + i] = b[i]; ` `        ``} ` `        ``n = n + m; ` ` `  `        ``// Builds a max heap of given arr[0..n-1] ` `        ``for` `(``int` `i = n / 2 - 1; i >= 0; i--) { ` `            ``maxHeapify(arr, n, i); ` `        ``} ` `    ``} ` `     `  `    ``// Driver Code ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``int``[] a = {10, 5, 6, 2}; ` `        ``int``[] b = {12, 7, 9}; ` `        ``int` `n = a.Length; ` `        ``int` `m = b.Length; ` ` `  `        ``int``[] merged = ``new` `int``[m + n]; ` ` `  `        ``mergeHeaps(merged, a, b, n, m); ` ` `  `        ``for` `(``int` `i = 0; i < m + n; i++) ` `            ``Console.Write(merged[i] + ``" "``); ` `        ``Console.WriteLine(); ` `    ``} ` `} ` ` `  `// This code is contributed by nitin mittal `

Output:

```12 10 9 2 5 7 6
```

Since time complexity for building the heap from array of n elements is O(n). The complexity of merging the heaps is equal to O(n + m).

## tags:

Arrays Heap Arrays Heap