Tutorialspoint.dev

Maximum difference between two subsets of m elements

Given an array of n integers and a number m, find the maximum possible difference between two sets of m elements chosen from given array.

Examples:

Input : arr[] = 1 2 3 4 5
            m = 4
Output : 4
The maximum four elements are 2, 3, 
4 and 5. The minimum four elements are 
1, 2, 3 and 4. The difference between
two sums is (2 + 3 + 4 + 5) - (1 + 2
+ 3 + 4) = 4
  
Input : arr[] = 5 8 11 40 15
           m = 2
Output : 42
The difference is (40 + 15) - (5  + 8)           


The idea is to first sort the array, then find sum of first m elements and sum of last m elements. Finally return difference between two sums.

CPP

// C++ program to find difference
// between max and min sum of array
#include <algorithm>
#include <iostream>
using namespace std;
  
// utility function
int find_difference(int arr[], int n, int m)
{
    int max = 0, min = 0;
  
    // sort array
    sort(arr, arr + n);
  
    for (int i = 0, j = n - 1;
         i < m; i++, j--) {
        min += arr[i];
        max += arr[j];
    }
  
    return (max - min);
}
  
// Driver code
int main()
{
    int arr[] = { 1, 2, 3, 4, 5 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int m = 4;
    cout << find_difference(arr, n, m);
    return 0;
}

Java

// Java program to find difference
// between max and min sum of array
import java.util.Arrays;
  
class GFG {
    // utility function
    static int find_difference(int arr[], int n,
                               int m)
    {
        int max = 0, min = 0;
  
        // sort array
        Arrays.sort(arr);
  
        for (int i = 0, j = n - 1;
             i < m; i++, j--) {
            min += arr[i];
            max += arr[j];
        }
  
        return (max - min);
    }
  
    // Driver program
    public static void main(String arg[])
    {
        int arr[] = { 1, 2, 3, 4, 5 };
        int n = arr.length;
        int m = 4;
        System.out.print(find_difference(arr, n, m));
    }
}
  
// This code is contributed by Anant Agarwal.

Python3

# Python program to
# find difference 
# between max and
# min sum of array
  
def find_difference(arr, n, m):
    max = 0; min = 0
       
    # sort array 
    arr.sort();
    j = n-1 
    for i in range(m):
        min += arr[i]
        max += arr[j]
        j = j - 1
       
    return (max - min)
   
# Driver code
if __name__ == "__main__":
    arr = [1, 2, 3, 4, 5]
    n = len(arr)
    m = 4
  
    print(find_difference(arr, n, m))   
  
# This code is contributed by
# Harshit Saini

C#

// C# program to find difference
// between max and min sum of array
using System;
  
class GFG {
      
    // utility function
    static int find_difference(int[] arr, int n,
                                          int m)
    {
        int max = 0, min = 0;
  
        // sort array
        Array.Sort(arr);
  
        for (int i = 0, j = n - 1;
            i < m; i++, j--) {
            min += arr[i];
            max += arr[j];
        }
  
        return (max - min);
    }
  
    // Driver program
    public static void Main()
    {
        int[] arr = { 1, 2, 3, 4, 5 };
        int n = arr.Length;
        int m = 4;
        Console.Write(find_difference(arr, n, m));
    }
}
  
// This code is contributed by nitin mittal

PHP

<?php
// PHP program to find difference
// between max and min sum of array
  
// utility function
function find_difference($arr, $n, $m)
{
    $max = 0; $min = 0;
  
    // sort array
    sort($arr);
    sort( $arr,$n);
  
    for($i = 0, $j = $n - 1; $i <$m; $i++, $j--)
    {
        $min += $arr[$i];
        $max += $arr[$j];
    }
  
    return ($max - $min);
}
  
// Driver code
{
    $arr = array(1, 2, 3, 4, 5);
    $n = sizeof($arr) / sizeof($arr[0]);
    $m = 4;
    echo find_difference($arr, $n, $m);
    return 0;
}
  
// This code is contributed by nitin mittal.
?>


Output:

4

We can optimize the above solution using more efficient approaches discussed in below post.
k largest(or smallest) elements in an array | added Min Heap method



This article is attributed to GeeksforGeeks.org

leave a comment

code

0 Comments

load comments

Subscribe to Our Newsletter