This is a C++ program to generate a graph for a given fixed degree sequence.This algorithm generates a undirected graph for the given degree sequence.It does not include self-edge and multiple edges.

**Examples:**

Input : degrees[] = {2, 2, 1, 1} Output : (0) (1) (2) (3) (0) 0 1 1 0 (1) 1 0 0 1 (2) 1 0 0 0 (3) 0 1 0 0 Explanation : We are given that there are four vertices with degree of vertex 0 as 2, degree of vertex 1 as 2, degree of vertex 2 as 1 and degree of vertex 3 as 1. Following is graph that follows given conditions. (0)----------(1) | | | | | | (2) (3)

**Approach : **

1- Take the input of the number of vertexes and their corresponding degree.

2- Declare adjacency matrix, mat[ ][ ] to store the graph.

3- To create the graph, create the first loop to connect each vertex ‘i’.

4- Second nested loop to connect the vertex ‘i’ to the every valid vertex ‘j’, next to it.

5- If the degree of vertex ‘i’ and ‘j’ are more than zero then connect them.

6- Print the adjacency matrix.

Based on the above explanation, below are implementations:

## C++

`// C++ program to generate a graph for a ` `// given fixed degrees ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// A function to print the adjacency matrix. ` `void` `printMat(` `int` `degseq[], ` `int` `n) ` `{ ` ` ` `// n is number of vertices ` ` ` `int` `mat[n][n]; ` ` ` `memset` `(mat, 0, ` `sizeof` `(mat)); ` ` ` ` ` `for` `(` `int` `i = 0; i < n; i++) { ` ` ` `for` `(` `int` `j = i + 1; j < n; j++) { ` ` ` ` ` `// For each pair of vertex decrement ` ` ` `// the degree of both vertex. ` ` ` `if` `(degseq[i] > 0 && degseq[j] > 0) { ` ` ` `degseq[i]--; ` ` ` `degseq[j]--; ` ` ` `mat[i][j] = 1; ` ` ` `mat[j][i] = 1; ` ` ` `} ` ` ` `} ` ` ` `} ` ` ` ` ` `// Print the result in specified format ` ` ` `cout << ` ```
"
"
``` ` ` `<< setw(3) << ` `" "` `; ` ` ` `for` `(` `int` `i = 0; i < n; i++) ` ` ` `cout << setw(3) << ` `"("` `<< i << ` `")"` `; ` ` ` `cout << ` ```
"
"
``` `; ` ` ` `for` `(` `int` `i = 0; i < n; i++) { ` ` ` `cout << setw(4) << ` `"("` `<< i << ` `")"` `; ` ` ` `for` `(` `int` `j = 0; j < n; j++) ` ` ` `cout << setw(5) << mat[i][j]; ` ` ` `cout << ` ```
"
"
``` `; ` ` ` `} ` `} ` ` ` `// driver program to test above function ` `int` `main() ` `{ ` ` ` `int` `degseq[] = { 2, 2, 1, 1, 1 }; ` ` ` `int` `n = ` `sizeof` `(degseq) / ` `sizeof` `(degseq[0]); ` ` ` `printMat(degseq, n); ` ` ` `return` `0; ` `} ` |

## Python3

# Python3 program to generate a graph

# for a given fixed degrees

# A function to prthe adjacency matrix.

def printMat(degseq, n):

# n is number of vertices

mat = [[0] * n for i in range(n)]

for i in range(n):

for j in range(i + 1, n):

# For each pair of vertex decrement

# the degree of both vertex.

if (degseq[i] > 0 and degseq[j] > 0):

degseq[i] -= 1

degseq[j] -= 1

mat[i][j] = 1

mat[j][i] = 1

# Prthe result in specified form

print(” “, end = ” “)

for i in range(n):

print(” “, “(“, i, “)”, end = “”)

print()

print()

for i in range(n):

print(” “, “(“, i, “)”, end = “”)

for j in range(n):

print(” “, mat[i][j], end = “”)

print()

# Driver Code

if __name__ == ‘__main__’:

degseq = [2, 2, 1, 1, 1]

n = len(degseq)

printMat(degseq, n)

# This code is contributed by PranchalK

**Output:**

(0) (1) (2) (3) (4) (0) 0 1 1 0 0 (1) 1 0 0 1 0 (2) 1 0 0 0 0 (3) 0 1 0 0 0 (4) 0 0 0 0 0

**Time Complexity: **O(v*v).

## leave a comment

## 1 Comments