Tutorialspoint.dev

Pairwise Swap leaf nodes in a binary tree

Given a binary tree, we need to write a program to swap leaf nodes in the given binary tree pairwise starting from from left to right as shown below.

Tree before swapping:

Tree after swapping:


The sequence of leaf nodes in original binary tree from left to right is (4, 6, 7, 9, 10). Now if we try to form pairs from this sequence, we will have two pairs as (4, 6), (7, 9). The last node (10) is unable to form pair with any node and thus left unswapped.



The idea to solve this problem is to first traverse the leaf nodes of the binary tree from left to right.
While traversing the leaf nodes, we maintain two pointers to keep track of first and second leaf nodes in a pair and a variable count to keep track of count of leaf nodes traversed.
Now, if we observe carefully then we see that while traversing if the count of leaf nodes traversed is even, it means that we can form a pair of leaf nodes. To keep track of this pair we take two pointers firstPtr and secondPtr as mentioned above. Every time we encounter a leaf node we initialize secondPtr with this leaf node. Now if the count is odd, we initialize firstPtr with secondPtr otherwise we simply swap these two nodes.

Below is the C++ implementation of above idea:

/* C++ program to pairwise swap
   leaf nodes from left to right */
#include <bits/stdc++.h>
using namespace std;
  
// A Binary Tree Node
struct Node
{
    int data;
    struct Node *left, *right;
};
  
// function to swap two Node
void Swap(Node **a, Node **b)
{
    Node * temp = *a;
    *a = *b;
    *b = temp;
}
  
// two pointers to keep track of
// first and second nodes in a pair
Node **firstPtr;
Node **secondPtr;
  
// function to pairwise swap leaf
// nodes from left to right
void pairwiseSwap(Node **root, int &count)
{
    // if node is null, return
    if (!(*root))
        return;
  
    // if node is leaf node, increment count
    if(!(*root)->left&&!(*root)->right)
    {
        // initialize second pointer
        // by current node
        secondPtr  = root;
  
        // increment count
        count++;
  
        // if count is even, swap first
        // and second pointers
        if (count%2 == 0)
            Swap(firstPtr, secondPtr);
  
        else
  
            // if count is odd, initialize
            // first pointer by second pointer
            firstPtr  = secondPtr;
    }
  
    // if left child exists, check for leaf
    // recursively
    if ((*root)->left)
        pairwiseSwap(&(*root)->left, count);
  
    // if right child exists, check for leaf
    // recursively
    if ((*root)->right)
        pairwiseSwap(&(*root)->right, count);
  
}
  
// Utility function to create a new tree node
Node* newNode(int data)
{
    Node *temp = new Node;
    temp->data = data;
    temp->left = temp->right = NULL;
    return temp;
}
  
// function to print inorder traversal
// of binary tree
void printInorder(Node* node)
{
    if (node == NULL)
        return;
  
    /* first recur on left child */
    printInorder(node->left);
  
    /* then print the data of node */
    printf("%d ", node->data);
  
    /* now recur on right child */
    printInorder(node->right);
}
  
// Driver program to test above functions
int main()
{
    // Let us create binary tree shown in
    // above diagram
    Node *root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->right->left = newNode(5);
    root->right->right = newNode(8);
    root->right->left->left = newNode(6);
    root->right->left->right = newNode(7);
    root->right->right->left = newNode(9);
    root->right->right->right = newNode(10);
  
    // print inorder traversal before swapping
    cout << "Inorder traversal before swap: ";
    printInorder(root);
    cout << " ";
  
    // variable to keep track
    // of leafs traversed
    int c = 0;
  
    // Pairwise swap of leaf nodes
    pairwiseSwap(&root, c);
  
    // print inorder traversal after swapping
    cout << "Inorder traversal after swap: ";
    printInorder(root);
    cout << " ";
  
    return 0;
}

Output:

Inorder traversal before swap:
4 2 1 6 5 7 3 9 8 10 
Inorder traversal after swap:
6 2 1 4 5 9 3 7 8 10 

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



This article is attributed to GeeksforGeeks.org

tags:

Tree Tree

leave a comment

code

0 Comments

load comments

Subscribe to Our Newsletter