Given a binary tree containing n nodes. The problem is to find the maximum sum obtained when the tree is spirally traversed. In spiral traversal one by one all levels are being traversed with the root level traversed from right to left, then next level from left to right, then further next level from right to left and so on.
Example:
Maximum spiral sum = 4 + (-1) + (-2) + 1 + 5 = 7
Approach: Obtain the level order traversal in spiral form of the given binary tree with the help of two stacks and store it in an array. Find the maximum sum sub-array of the array so obtained.
C++
// C++ implementation to find maximum spiral sum #include <bits/stdc++.h> using namespace std; // structure of a node of binary tree struct Node { int data; Node *left, *right; }; // A utility function to create a new node Node* newNode( int data) { // allocate space Node* node = new Node; // put in the data node->data = data; node->left = node->right = NULL; return node; } // function to find the maximum sum contiguous subarray. // implements kadane's algorithm int maxSum(vector< int > arr, int n) { // to store the maximum value that is ending // up to the current index int max_ending_here = INT_MIN; // to store the maximum value encountered so far int max_so_far = INT_MIN; // traverse the array elements for ( int i = 0; i < n; i++) { // if max_ending_here < 0, then it could // not possibly contribute to the maximum // sum further if (max_ending_here < 0) max_ending_here = arr[i]; // else add the value arr[i] to max_ending_here else max_ending_here += arr[i]; // update max_so_far max_so_far = max(max_so_far, max_ending_here); } // required maxium sum contiguous subarray value return max_so_far; } // function to find maximum spiral sum int maxSpiralSum(Node* root) { // if tree is empty if (root == NULL) return 0; // Create two stacks to store alternate levels stack<Node*> s1; // For levels from right to left stack<Node*> s2; // For levels from left to right // vector to store spiral order traversal // of the binary tree vector< int > arr; // Push first level to first stack 's1' s1.push(root); // traversing tree in spiral form until // there are elements in any one of the // stacks while (!s1.empty() || !s2.empty()) { // traverse current level from s1 and // push nodes of next level to s2 while (!s1.empty()) { Node* temp = s1.top(); s1.pop(); // push temp-data to 'arr' arr.push_back(temp->data); // Note that right is pushed before left if (temp->right) s2.push(temp->right); if (temp->left) s2.push(temp->left); } // traverse current level from s2 and // push nodes of next level to s1 while (!s2.empty()) { Node* temp = s2.top(); s2.pop(); // push temp-data to 'arr' arr.push_back(temp->data); // Note that left is pushed before right if (temp->left) s1.push(temp->left); if (temp->right) s1.push(temp->right); } } // required maximum spiral sum return maxSum(arr, arr.size()); } // Driver program to test above int main() { Node* root = newNode(-2); root->left = newNode(-3); root->right = newNode(4); root->left->left = newNode(5); root->left->right = newNode(1); root->right->left = newNode(-2); root->right->right = newNode(-1); root->left->left->left = newNode(-3); root->right->right->right = newNode(2); cout << "Maximum Spiral Sum = " << maxSpiralSum(root); return 0; } |
Java
// Java implementation to find maximum spiral sum import java.util.ArrayList; import java.util.Stack; public class MaxSpiralSum { // function to find the maximum sum contiguous subarray. // implements kadane's algorithm static int maxSum(ArrayList<Integer> arr) { // to store the maximum value that is ending // up to the current index int max_ending_here = Integer.MIN_VALUE; // to store the maximum value encountered so far int max_so_far = Integer.MIN_VALUE; // traverse the array elements for ( int i = 0 ; i < arr.size(); i++) { // if max_ending_here < 0, then it could // not possibly contribute to the maximum // sum further if (max_ending_here < 0 ) max_ending_here = arr.get(i); // else add the value arr[i] to max_ending_here else max_ending_here +=arr.get(i); // update max_so_far max_so_far = Math.max(max_so_far, max_ending_here); } // required maxium sum contiguous subarray value return max_so_far; } // Function to find maximum spiral sum public static int maxSpiralSum(Node root) { // if tree is empty if (root == null ) return 0 ; // Create two stacks to store alternate levels Stack<Node> s1= new Stack<>(); // For levels from right to left Stack<Node> s2= new Stack<>(); // For levels from left to right // ArrayList to store spiral order traversal // of the binary tree ArrayList<Integer> arr= new ArrayList<>(); // Push first level to first stack 's1' s1.push(root); // traversing tree in spiral form until // there are elements in any one of the // stacks while (!s1.isEmpty() || !s2.isEmpty()) { // traverse current level from s1 and // push nodes of next level to s2 while (!s1.isEmpty()) { Node temp = s1.pop(); // push temp-data to 'arr' arr.add(temp.data); // Note that right is pushed before left if (temp.right!= null ) s2.push(temp.right); if (temp.left!= null ) s2.push(temp.left); } // traverse current level from s2 and // push nodes of next level to s1 while (!s2.isEmpty()) { Node temp = s2.pop(); // push temp-data to 'arr' arr.add(temp.data); // Note that left is pushed before right if (temp.left!= null ) s1.push(temp.left); if (temp.right!= null ) s1.push(temp.right); } } // required maximum spiral sum return maxSum(arr); } public static void main(String args[]) { Node root = new Node(- 2 ); root.left = new Node(- 3 ); root.right = new Node( 4 ); root.left.left = new Node( 5 ); root.left.right = new Node( 1 ); root.right.left = new Node(- 2 ); root.right.right = new Node(- 1 ); root.left.left.left = new Node(- 3 ); root.right.right.right = new Node( 2 ); System.out.print( "Maximum Spiral Sum = " +maxSpiralSum(root)); } } /* A binary tree node has data, pointer to left child and a pointer to right child */ class Node { int data ; Node left, right ; Node( int data) { this .data=data; left=right= null ; } }; //This code is contributed by Gaurav Tiwari |
C#
// C# implementation to find maximum spiral sum using System; using System.Collections.Generic; public class MaxSpiralSum { // function to find the maximum // sum contiguous subarray. // implements kadane's algorithm static int maxSum(List< int > arr) { // to store the maximum value that is ending // up to the current index int max_ending_here = int .MinValue; // to store the maximum value encountered so far int max_so_far = int .MinValue; // traverse the array elements for ( int i = 0; i < arr.Count; i++) { // if max_ending_here < 0, then it could // not possibly contribute to the maximum // sum further if (max_ending_here < 0) max_ending_here = arr[i]; // else add the value arr[i] // to max_ending_here else max_ending_here +=arr[i]; // update max_so_far max_so_far = Math.Max(max_so_far, max_ending_here); } // required maxium sum // contiguous subarray value return max_so_far; } // Function to find maximum spiral sum public static int maxSpiralSum(Node root) { // if tree is empty if (root == null ) return 0; // Create two stacks to store alternate levels Stack<Node> s1 = new Stack<Node>(); // For levels from right to left Stack<Node> s2 = new Stack<Node>(); // For levels from left to right // ArrayList to store spiral order traversal // of the binary tree List< int > arr= new List< int >(); // Push first level to first stack 's1' s1.Push(root); // traversing tree in spiral form until // there are elements in any one of the // stacks while (s1.Count != 0 || s2.Count != 0) { // traverse current level from s1 and // push nodes of next level to s2 while (s1.Count != 0) { Node temp = s1.Pop(); // push temp-data to 'arr' arr.Add(temp.data); // Note that right is pushed before left if (temp.right != null ) s2.Push(temp.right); if (temp.left != null ) s2.Push(temp.left); } // traverse current level from s2 and // push nodes of next level to s1 while (s2.Count != 0) { Node temp = s2.Pop(); // push temp-data to 'arr' arr.Add(temp.data); // Note that left is pushed before right if (temp.left != null ) s1.Push(temp.left); if (temp.right != null ) s1.Push(temp.right); } } // required maximum spiral sum return maxSum(arr); } // Driver code public static void Main(String []args) { Node root = new Node(-2); root.left = new Node(-3); root.right = new Node(4); root.left.left = new Node(5); root.left.right = new Node(1); root.right.left = new Node(-2); root.right.right = new Node(-1); root.left.left.left = new Node(-3); root.right.right.right = new Node(2); Console.Write( "Maximum Spiral Sum = " + maxSpiralSum(root)); } } /* A binary tree node has data, pointer to left child and a pointer to right child */ public class Node { public int data ; public Node left, right ; public Node( int data) { this .data = data; left = right = null ; } }; // This code is contributed Rajput-Ji |
Output:
Maximum Spiral Sum = 7
Time Complexity: O(n).
Auxiliary Space: O(n).
leave a comment
0 Comments