Tutorialspoint.dev

Get maximum left node in binary tree

Given a tree, the task is to find the maximum in an only left node of the binary tree.

Examples:

Input : 
           7
         /    
        6       5
       /      / 
      4  3     2  1 
Output :
6

Input :
            1
         /    
        2       3
       /       / 
      4       5   6
            /   
         7  8   9 
Output :
8


Traverse with inorder traversal and Apply the condition for the left node only and get maximum of left node.
Let’s try to understand with code.

C++

// CPP program to print maximum element
// in left node.
#include <bits/stdc++.h>
using namespace std;
  
// A Binary Tree Node
struct Node {
    int data;
    struct Node *left, *right;
};
  
// Get max of left element using
// Inorder traversal
int maxOfLeftElement(Node* root)
{
    int res = INT_MIN;
    if (root == NULL)
        return res;
  
    if (root->left != NULL)
        res = root->left->data;
  
    // Return maximum of three values
    // 1) Recursive max in left subtree
    // 2) Value in left node
    // 3) Recursive max in right subtree
    return max({ maxOfLeftElement(root->left),
                 res,
                 maxOfLeftElement(root->right) });
}
  
// Utility function to create a new tree node
Node* newNode(int data)
{
    Node* temp = new Node;
    temp->data = data;
    temp->left = temp->right = NULL;
    return temp;
}
  
// Driver program to test above functions
int main()
{
    // Let us create binary tree shown in above diagram
    Node* root = newNode(7);
    root->left = newNode(6);
    root->right = newNode(5);
    root->left->left = newNode(4);
    root->left->right = newNode(3);
    root->right->left = newNode(2);
    root->right->right = newNode(1);
  
    /*     7
         /   
        6       5
       /      /
      4  3     2  1          */
    cout << maxOfLeftElement(root);
    return 0;
}

Java

// Java program to print maximum element 
// in left node. 
import java.util.*;
class GfG {
  
// A Binary Tree Node 
static class Node { 
    int data; 
    Node left, right; 
}
  
// Get max of left element using 
// Inorder traversal 
static int maxOfLeftElement(Node root) 
    int res = Integer.MIN_VALUE; 
    if (root == null
        return res; 
  
    if (root.left != null
        res = root.left.data; 
  
    // Return maximum of three values 
    // 1) Recursive max in left subtree 
    // 2) Value in left node 
    // 3) Recursive max in right subtree 
    return Math.max(maxOfLeftElement(root.left),
       Math.max(res, maxOfLeftElement(root.right))); 
  
// Utility function to create a new tree node 
static Node newNode(int data) 
    Node temp = new Node(); 
    temp.data = data; 
    temp.left = null;
    temp.right = null
    return temp; 
  
// Driver program to test above functions 
public static void main(String[] args) 
    // Let us create binary tree shown in above diagram 
    Node root = newNode(7); 
    root.left = newNode(6); 
    root.right = newNode(5); 
    root.left.left = newNode(4); 
    root.left.right = newNode(3); 
    root.right.left = newNode(2); 
    root.right.right = newNode(1); 
  
    /* 7 
        /  
        6 5 
    / /  
    4 3 2 1         */
    System.out.println(maxOfLeftElement(root)); 
}

Python3

# Python program to prmaximum element
# in left node.

# Utility class to create a
# new tree node
class newNode:
def __init__(self, data):
self.data = data
self.left = self.right = None

# Get max of left element using
# Inorder traversal
def maxOfLeftElement(root):
res = -999999999999
if (root == None):
return res

if (root.left != None):
res = root.left.data

# Return maximum of three values
# 1) Recursive max in left subtree
# 2) Value in left node
# 3) Recursive max in right subtree
return max({ maxOfLeftElement(root.left), res,
maxOfLeftElement(root.right) })

# Driver Code
if __name__ == ‘__main__’:

# Let us create binary tree shown
# in above diagram
root = newNode(7)
root.left = newNode(6)
root.right = newNode(5)
root.left.left = newNode(4)
root.left.right = newNode(3)
root.right.left = newNode(2)
root.right.right = newNode(1)

# 7
# /
# 6 5
# / /
# 4 3 2 1
print(maxOfLeftElement(root))

# This code is contributed by PranchalK

C#

// C# program to print maximum element 
// in left node.
using System;
  
class GfG 
{
  
    // A Binary Tree Node 
    class Node 
    
        public int data; 
        public Node left, right; 
    }
  
    // Get max of left element using 
    // Inorder traversal 
    static int maxOfLeftElement(Node root) 
    
        int res = int.MinValue; 
        if (root == null
            return res; 
  
        if (root.left != null
            res = root.left.data; 
  
        // Return maximum of three values 
        // 1) Recursive max in left subtree 
        // 2) Value in left node 
        // 3) Recursive max in right subtree 
        return Math.Max(maxOfLeftElement(root.left),
        Math.Max(res, maxOfLeftElement(root.right))); 
    
  
    // Utility function to create a new tree node 
    static Node newNode(int data) 
    
        Node temp = new Node(); 
        temp.data = data; 
        temp.left = null;
        temp.right = null
        return temp; 
    
  
    // Driver code 
    public static void Main(String[] args) 
    
        // Let us create binary tree
        // shown in above diagram 
        Node root = newNode(7); 
        root.left = newNode(6); 
        root.right = newNode(5); 
        root.left.left = newNode(4); 
        root.left.right = newNode(3); 
        root.right.left = newNode(2); 
        root.right.right = newNode(1); 
  
        /* 7 
            /  
            6 5 
        / /  
        4 3 2 1         */
        Console.WriteLine(maxOfLeftElement(root)); 
    }
}
  
// This code is contributed by 29AjayKumar

Output:

6


This article is attributed to GeeksforGeeks.org

tags:

Tree Tree

leave a comment

code

0 Comments

load comments

Subscribe to Our Newsletter