Tutorialspoint.dev

Find maximum (or minimum) in Binary Tree

Given a Binary Tree, find maximum(or minimum) element in it. For example, maximum in the following Binary Tree is 9.

1T



In Binary Search Tree, we can find maximum by traversing right pointers until we reach rightmost node. But in Binary Tree, we must visit every node to figure out maximum. So the idea is to traverse the given tree and for every node return maximum of 3 values.
1) Node’s data.
2) Maximum in node’s left subtree.
3) Maximum in node’s right subtree.

Below is the implementation of above approach.

CPP

// C++ program to find maximum and
// minimum in a Bianry Tree
#include
#include
using namespace std;

// A tree node
class Node
{
public:
int data;
Node* left, *right;

/* Constructor that allocates a new
node with the given data and NULL
left and right pointers. */
Node(int data)
{
this->data = data;
this->left = NULL;
this->right = NULL;
}
};

// Returns maximum value in a given
// Binary Tree
int findMax(Node* root)
{
// Base case
if (root == NULL)
return INT_MIN;

// Return maximum of 3 values:
// 1) Root’s data 2) Max in Left Subtree
// 3) Max in right subtree
int res = root->data;
int lres = findMax(root->left);
int rres = findMax(root->right);
if (lres > res)
res = lres;
if (rres > res)
res = rres;
return res;
}

// Driver Code
int main()
{
Node*NewRoot = NULL;
Node *root = new Node(2);
root->left = new Node(7);
root->right = new Node(5);
root->left->right = new Node(6);
root->left->right->left = new Node(1);
root->left->right->right = new Node(11);
root->right->right = new Node(9);
root->right->right->left = new Node(4);

cout << "Maximum element is " << findMax(root) << endl; return 0; } // This code is contributed by // rathbhupendra [tabby title="C"]

// C program to find maximum and minimum in a Bianry Tree
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
  
// A tree node
struct Node
{
    int data;
    struct Node* left, *right;
};
  
// A utility function to create a new node
struct Node* newNode(int data)
{
    struct Node* node = (struct Node*)
                        malloc(sizeof(struct Node));
    node->data = data;
    node->left = node->right = NULL;
    return(node);
}
  
// Returns maximum value in a given Binary Tree
int findMax(struct Node* root)
{
    // Base case
    if (root == NULL)
      return INT_MIN;
  
    // Return maximum of 3 values:
    // 1) Root's data 2) Max in Left Subtree
    // 3) Max in right subtree
    int res = root->data;
    int lres = findMax(root->left);
    int rres = findMax(root->right);
    if (lres > res)
      res = lres;
    if (rres > res)
      res = rres;
    return res;
}
  
// Driver program
int main(void)
{
    struct Node*NewRoot=NULL;
    struct Node *root = newNode(2);
    root->left        = newNode(7);
    root->right       = newNode(5);
    root->left->right = newNode(6);
    root->left->right->left=newNode(1);
    root->left->right->right=newNode(11);
    root->right->right=newNode(9);
    root->right->right->left=newNode(4);
  
    printf ("Maximum element is %d ", findMax(root));
  
    return 0;
}

Java

// Java code to Find maximum (or minimum) in 
// Binary Tree
  
// A binary tree node
class Node {
    int data;
    Node left, right;
  
public Node(int data)
    {
        this.data = data;
        left = right = null;
    }
}
  
class BinaryTree {
    Node root;
  
    // Returns the max value in a binary tree
    static int findMax(Node node)
    {
        if (node == null)
            return Integer.MIN_VALUE;
  
        int res = node.data;
        int lres = findMax(node.left);
        int rres = findMax(node.right);
  
        if (lres > res)
            res = lres;
        if (rres > res)
            res = rres;
        return res;
    }
  
    /* Driver program to test above functions */
    public static void main(String args[])
    {
        BinaryTree tree = new BinaryTree();
        tree.root = new Node(2);
        tree.root.left = new Node(7);
        tree.root.right = new Node(5);
        tree.root.left.right = new Node(6);
        tree.root.left.right.left = new Node(1);
        tree.root.left.right.right = new Node(11);
        tree.root.right.right = new Node(9);
        tree.root.right.right.left = new Node(4);
  
        System.out.println("Maximum element is " +
                         tree.findMax(tree.root));
    }
}
  
// This code is contributed by Kamal Rawal

Python3

# Python3 program to find maximum
# and minimum in a Bianry Tree
  
# A class to create a new node 
class newNode:
    def __init__(self, data):
        self.data = data 
        self.left = self.right = None
      
# Returns maximum value in a 
# given Binary Tree 
def findMax(root):
      
    # Base case 
    if (root == None): 
        return -999999999999
  
    # Return maximum of 3 values: 
    # 1) Root's data 2) Max in Left Subtree 
    # 3) Max in right subtree 
    res = root.data
    lres = findMax(root.left) 
    rres = findMax(root.right) 
    if (lres > res):
        res = lres 
    if (rres > res): 
        res = rres 
    return res
  
# Driver Code
if __name__ == '__main__':
    root = newNode(2
    root.left     = newNode(7
    root.right     = newNode(5
    root.left.right = newNode(6
    root.left.right.left=newNode(1
    root.left.right.right=newNode(11
    root.right.right=newNode(9
    root.right.right.left=newNode(4
  
    print("Maximum element is"
                 findMax(root)) 
  
# This code is contributed by PranchalK

C#

using System;
  
// C# code to Find maximum (or minimum) in  
// Binary Tree 
  
// A binary tree node 
public class Node
{
    public int data;
    public Node left, right;
  
public Node(int data)
{
        this.data = data;
        left = right = null;
}
}
  
public class BinaryTree
{
    public Node root;
  
    // Returns the max value in a binary tree 
    public static int findMax(Node node)
    {
        if (node == null)
        {
            return int.MinValue;
        }
  
        int res = node.data;
        int lres = findMax(node.left);
        int rres = findMax(node.right);
  
        if (lres > res)
        {
            res = lres;
        }
        if (rres > res)
        {
            res = rres;
        }
        return res;
    }
  
    /* Driver program to test above functions */
    public static void Main(string[] args)
    {
        BinaryTree tree = new BinaryTree();
        tree.root = new Node(2);
        tree.root.left = new Node(7);
        tree.root.right = new Node(5);
        tree.root.left.right = new Node(6);
        tree.root.left.right.left = new Node(1);
        tree.root.left.right.right = new Node(11);
        tree.root.right.right = new Node(9);
        tree.root.right.right.left = new Node(4);
  
        Console.WriteLine("Maximum element is " + BinaryTree.findMax(tree.root));
    }
}
  
  // This code is contributed by Shrikant13


Output:

Maximum element is 11

Similarly, we can find minimum element in Binary tree by comparing three values. Below is the function to find minimum in Binary Tree.

C

// Returns minimum value in a given Binary Tree
int findMin(struct Node* root)
{
    // Base case
    if (root == NULL)
      return INT_MAX;
  
    // Return minimum of 3 values:
    // 1) Root's data 2) Max in Left Subtree
    // 3) Max in right subtree
    int res = root->data;
    int lres = findMin(root->left);
    int rres = findMin(root->right);
    if (lres < res)
      res = lres;
    if (rres < res)
      res = rres;
    return res;
}

Java

// Returns the min value in a binary tree
static int findMin(Node node)
{
    if (node == null)
        return Integer.MAX_VALUE;
  
    int res = node.data;
    int lres = findMin(node.left);
    int rres = findMin(node.right);
  
    if (lres < res)
        res = lres;
    if (rres < res)
        res = rres;
    return res;
}

C#

// Returns the min value in a binary tree
public static int findMin(Node node)
{
    if (node == null)
        return int.MaxValue;
  
    int res = node.data;
    int lres = findMin(node.left);
    int rres = findMin(node.right);
  
    if (lres < res)
        res = lres;
    if (rres < res)
        res = rres;
    return res;
}
  
// This code is contributed by Code_Mech



This article is attributed to GeeksforGeeks.org

tags:

Tree Tree

leave a comment

code

0 Comments

load comments

Subscribe to Our Newsletter