Given a Binary Tree, find the deepest leaf node that is right child of its parent. For example, consider the following tree. The deepest right leaf node is the node with value 10.
Examples:
Input : 1 / 2 3 / 4 5 6 7 8 / 9 10 Output : 10
The idea is similar to Method 2 of level order traversal
Traverse the tree level by level and while pushing right child to queue, check if it is leaf node, if it’s leaf node, then update the result and since we are traversing level by level, the last stored right leaf will be the deepest right leaf node.
C++
// CPP program to find deepest right leaf // node of binary tree #include <bits/stdc++.h> using namespace std; // tree node struct Node { int data; Node *left, *right; }; // returns a new tree Node Node* newNode( int data) { Node* temp = new Node(); temp->data = data; temp->left = temp->right = NULL; return temp; } // return the deepest right leaf node // of binary tree Node* getDeepestRightLeafNode(Node* root) { if (!root) return NULL; // create a queue for level order traversal queue<Node*> q; q.push(root); Node* result = NULL; // traverse until the queue is empty while (!q.empty()) { Node* temp = q.front(); q.pop(); if (temp->left) { q.push(temp->left); } // Since we go level by level, the last // stored right leaf node is deepest one if (temp->right){ q.push(temp->right); if (!temp->right->left && !temp->right->right) result = temp->right; } } return result; } // driver program int main() { // construct a tree Node* root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->right = newNode(4); root->right->left = newNode(5); root->right->right = newNode(6); root->right->left->right = newNode(7); root->right->right->right = newNode(8); root->right->left->right->left = newNode(9); root->right->right->right->right = newNode(10); Node* result = getDeepestRightLeafNode(root); if (result) cout << "Deepest Right Leaf Node :: " << result->data << endl; else cout << "No result, right leaf not found
" ; return 0; } |
Python3
# Python3 program to find closest
# value in Binary search Tree
_MIN = -2147483648
_MAX = 2147483648
# Helper function that allocates a new
# node with the given data and None
# left and right poers.
class newnode:
# Constructor to create a new node
def __init__(self, data):
self.data = data
self.left = None
self.right = None
# utility function to return level
# of given node
def getDeepestRightLeafNode(root) :
if (not root):
return None
# create a queue for level
# order traversal
q = []
q.append(root)
result = None
# traverse until the queue is empty
while (len(q)):
temp = q[0]
q.pop(0)
if (temp.left):
q.append(temp.left)
# Since we go level by level, the last
# stored right leaf node is deepest one
if (temp.right):
q.append(temp.right)
if (not temp.right.left and
not temp.right.right):
result = temp.right
return result
# Driver Code
if __name__ == ‘__main__’:
# create a binary tree
root = newnode(1)
root.left = newnode(2)
root.right = newnode(3)
root.left.right = newnode(4)
root.right.left = newnode(5)
root.right.right = newnode(6)
root.right.left.right = newnode(7)
root.right.right.right = newnode(8)
root.right.left.right.left = newnode(9)
root.right.right.right.right = newnode(10)
result = getDeepestRightLeafNode(root)
if result:
print(“Deepest Right Leaf Node ::”,
result.data)
else:
print(“No result, right leaf not found”)
# This code is contributed by
# Shubham Singh(SHUBHAMSINGH10)
Output:
Deepest Right Leaf Node :: 10
Time Complexity : O(n)
leave a comment
0 Comments