Tutorialspoint.dev

Change a Binary Tree so that every node stores sum of all nodes in left subtree

Given a Binary Tree, change the value in each node to sum of all the values in the nodes in the left subtree including its own.

Examples:

Input : 
     1
   /   
 2      3

Output :
    3
  /   
 2     3


Input
       1
      / 
     2   3
    /    
   4   5   6
Output:
      12
     / 
    6   3
   /    
  4   5   6

We strongly recommend you to minimize your browser and try this yourself first.

The idea is to traverse the given tree in bottom up manner. For every node, recursively compute sum of nodes in left and right subtrees. Add sum of nodes in left subtree to current node and return sum of nodes under current subtree.

Below is the implementation of above idea.

C++



// C++ program to store sum of nodes
// in left subtree in every node 
#include<bits/stdc++.h> 
#include<iostream>
using namespace std; 
  
// A tree node 
class node 
    public:
    int data; 
    node* left, *right; 
      
    /* Constructor that allocates a new node with the 
    given data and NULL left and right pointers. */
    node(int data)
    {
        this->data = data;
        this->left = NULL;
        this->right = NULL;
    }
}; 
  
// Function to modify a Binary Tree
// so that every node stores sum of 
// values in its left child including 
// its own value 
int updatetree(node *root) 
    // Base cases 
    if (!root) 
        return 0; 
    if (root->left == NULL && root->right == NULL) 
        return root->data; 
  
    // Update left and right subtrees 
    int leftsum = updatetree(root->left); 
    int rightsum = updatetree(root->right); 
  
    // Add leftsum to current node 
    root->data += leftsum; 
  
    // Return sum of values under root 
    return root->data + rightsum; 
  
// Utility function to do inorder traversal 
void inorder(node* node) 
    if (node == NULL) 
        return
    inorder(node->left); 
    cout<<node->data<<" "
    inorder(node->right); 
  
// Driver code 
int main() 
    /* Let us construct below tree 
                
            /  
            2 3 
            /  
            4 5 6 */
    struct node *root = new node(1); 
    root->left   = new node(2); 
    root->right = new node(3); 
    root->left->left = new node(4); 
    root->left->right = new node(5); 
    root->right->right = new node(6); 
  
    updatetree(root); 
  
    cout << "Inorder traversal of the modified tree is: "
    inorder(root); 
    return 0; 
  
// This code is contributed by rathbhupendra

C

// C program to store  sum of nodes in left subtree in every
// node
#include<bits/stdc++.h>
using namespace std;
  
// A tree node
struct node
{
    int data;
    struct node* left,  *right;
};
  
// Function to modify a Binary Tree so that every node
// stores sum of values in its left child including its
// own value
int updatetree(node *root)
{
    // Base cases
    if (!root)
        return 0;
    if (root->left == NULL && root->right == NULL)
        return root->data;
  
    // Update left and right subtrees
    int leftsum  = updatetree(root->left);
    int rightsum = updatetree(root->right);
  
    // Add leftsum to current node
    root->data += leftsum;
  
    // Return sum of values under root
    return root->data + rightsum;
}
  
// Utility function to do inorder traversal
void inorder(struct node* node)
{
    if (node == NULL)
        return;
    inorder(node->left);
    printf("%d ", node->data);
    inorder(node->right);
}
  
// Utility function to create a new node
struct node* newNode(int data)
{
    struct node* node =
        (struct node*)malloc(sizeof(struct node));
    node->data = data;
    node->left = NULL;
    node->right = NULL;
    return(node);
}
  
// Driver program
int main()
{
    /* Let us construct below tree
                1
               /
              2   3
             /   
            4   5   6    */
    struct node *root  = newNode(1);
    root->left         = newNode(2);
    root->right        = newNode(3);
    root->left->left   = newNode(4);
    root->left->right  = newNode(5);
    root->right->right = newNode(6);
  
    updatetree(root);
  
    cout << "Inorder traversal of the modified tree is ";
    inorder(root);
    return 0;
}

Java

// Java program to store sum of nodes in left subtree in every 
// node 
class GfG { 
  
// A tree node 
static class node 
    int data; 
    node left, right; 
}
  
// Function to modify a Binary Tree so that every node 
// stores sum of values in its left child including its 
// own value 
static int updatetree(node root) 
    // Base cases 
    if (root == null
        return 0
    if (root.left == null && root.right == null
        return root.data; 
  
    // Update left and right subtrees 
    int leftsum = updatetree(root.left); 
    int rightsum = updatetree(root.right); 
  
    // Add leftsum to current node 
    root.data += leftsum; 
  
    // Return sum of values under root 
    return root.data + rightsum; 
  
// Utility function to do inorder traversal 
static void inorder(node node) 
    if (node == null
        return
    inorder(node.left); 
    System.out.print(node.data + " "); 
    inorder(node.right); 
  
// Utility function to create a new node 
static node newNode(int data) 
    node node = new node(); 
    node.data = data; 
    node.left = null
    node.right = null
    return(node); 
  
// Driver program 
public static void main(String[] args) 
    /* Let us construct below tree 
                
            /  
            2 3 
            /  
            4 5 6 */
    node root = newNode(1); 
    root.left         = newNode(2); 
    root.right     = newNode(3); 
    root.left.left = newNode(4); 
    root.left.right = newNode(5); 
    root.right.right = newNode(6); 
  
    updatetree(root); 
  
      
    System.out.println("Inorder traversal of the modified tree is"); 
    inorder(root); 

Python3

# Python3 program to store sum of nodes 
# in left subtree in every node 
  
# Binary Tree Node 
  
# utility that allocates a new Node 
# with the given key 
class newNode: 
  
    # Construct to create a new node 
    def __init__(self, key): 
        self.data = key
        self.left = None
        self.right = None
  
# Function to modify a Binary Tree so 
# that every node stores sum of values 
# in its left child including its own value 
def updatetree(root):
      
    # Base cases 
    if (not root): 
        return 0
    if (root.left == None and
        root.right == None) :
        return root.data 
  
    # Update left and right subtrees 
    leftsum = updatetree(root.left) 
    rightsum = updatetree(root.right) 
  
    # Add leftsum to current node 
    root.data += leftsum 
  
    # Return sum of values under root 
    return root.data + rightsum 
  
# Utility function to do inorder traversal 
def inorder(node) :
  
    if (node == None) :
        return
    inorder(node.left) 
    print(node.data, end = " "
    inorder(node.right) 
  
# Driver Code 
if __name__ == '__main__':
      
    """ Let us con below tree 
                    
                /  
                2 3 
                /  
                4 5 6 """
    root = newNode(1
    root.left = newNode(2
    root.right = newNode(3
    root.left.left = newNode(4
    root.left.right = newNode(5
    root.right.right = newNode(6
  
    updatetree(root) 
  
    print("Inorder traversal of the modified tree is"
    inorder(root)
  
# This code is contributed by
# Shubham Singh(SHUBHAMSINGH10)

C#

// C# program to store sum of nodes in left  
// subtree in every node 
using System;
  
class GfG 
  
// A tree node 
class node 
    public int data; 
    public node left, right; 
  
// Function to modify a Binary Tree so 
// that every node stores sum of values 
// in its left child including its own value 
static int updatetree(node root) 
    // Base cases 
    if (root == null
        return 0; 
    if (root.left == null && root.right == null
        return root.data; 
  
    // Update left and right subtrees 
    int leftsum = updatetree(root.left); 
    int rightsum = updatetree(root.right); 
  
    // Add leftsum to current node 
    root.data += leftsum; 
  
    // Return sum of values under root 
    return root.data + rightsum; 
  
// Utility function to do inorder traversal 
static void inorder(node node) 
    if (node == null
        return
    inorder(node.left); 
    Console.Write(node.data + " "); 
    inorder(node.right); 
  
// Utility function to create a new node 
static node newNode(int data) 
    node node = new node(); 
    node.data = data; 
    node.left = null
    node.right = null
    return(node); 
  
// Driver code 
public static void Main() 
    /* Let us construct below tree 
                
            /  
            2 3 
            /  
            4 5 6 */
    node root = newNode(1); 
    root.left = newNode(2); 
    root.right = newNode(3); 
    root.left.left = newNode(4); 
    root.left.right = newNode(5); 
    root.right.right = newNode(6); 
  
    updatetree(root); 
  
    Console.WriteLine("Inorder traversal of the modified tree is"); 
    inorder(root); 
  
/* This code is contributed by Rajput-Ji*/


Output:

Inorder traversal of the modified tree is
4 6 5 12 3 6

Time Complexity: O(n)

Thanks to Gaurav Ahrirwar for suggesting this solution.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



This article is attributed to GeeksforGeeks.org

tags:

Tree Tree

leave a comment

code

0 Comments

load comments

Subscribe to Our Newsletter