# Maximum element between two nodes of BST

Given an array of N elements and two integers A, B which belongs to the given array. Create a Binary Search Tree by inserting element from arr to arr[n-1]. The task is to find the maximum element in the path from A to B.

Examples :

```Input : arr[] = { 18, 36, 9, 6, 12, 10, 1, 8 },
a = 1,
b = 10.
Output : 12
``` Path from 1 to 10 contains { 1, 6, 9, 12, 10 }. Maximum element is 12.

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

The idea is to find Lowest Common Ancestor of node ‘a’ and node ‘b’. Then search maximum node between LCA and ‘a’, also find maximum node between LCA and ‘b’. Answer will be maximum node of two.

## C++

 `// C++ program to find maximum element in the path ` `// between two Nodes of Binary Search Tree. ` `#include ` `using` `namespace` `std; ` ` `  `struct` `Node ` `{ ` `    ``struct` `Node *left, *right; ` `    ``int` `data; ` `}; ` ` `  `// Create and return a pointer of new Node. ` `Node *createNode(``int` `x) ` `{ ` `    ``Node *p = ``new` `Node; ` `    ``p -> data = x; ` `    ``p -> left = p -> right = NULL; ` `    ``return` `p; ` `} ` ` `  `// Insert a new Node in Binary Search Tree. ` `void` `insertNode(``struct` `Node *root, ``int` `x) ` `{ ` `    ``Node *p = root, *q = NULL; ` ` `  `    ``while` `(p != NULL) ` `    ``{ ` `        ``q = p; ` `        ``if` `(p -> data < x) ` `            ``p = p -> right; ` `        ``else` `            ``p = p -> left; ` `    ``} ` ` `  `    ``if` `(q == NULL) ` `        ``p = createNode(x); ` `    ``else` `    ``{ ` `        ``if` `(q -> data < x) ` `            ``q -> right = createNode(x); ` `        ``else` `            ``q -> left = createNode(x); ` `    ``} ` `} ` ` `  `// Return the maximum element between a Node ` `// and its given ancestor. ` `int` `maxelpath(Node *q, ``int` `x) ` `{ ` `    ``Node *p = q; ` ` `  `    ``int` `mx = INT_MIN; ` ` `  `    ``// Traversing the path between ansector and ` `    ``// Node and finding maximum element. ` `    ``while` `(p -> data != x) ` `    ``{ ` `        ``if` `(p -> data > x) ` `        ``{ ` `            ``mx = max(mx, p -> data); ` `            ``p = p -> left; ` `        ``} ` `        ``else` `        ``{ ` `            ``mx = max(mx, p -> data); ` `            ``p = p -> right; ` `        ``} ` `    ``} ` ` `  `    ``return` `max(mx, x); ` `} ` ` `  `// Return maximum element in the path between ` `// two given Node of BST. ` `int` `maximumElement(``struct` `Node *root, ``int` `x, ``int` `y) ` `{ ` `    ``Node *p = root; ` ` `  `    ``// Finding the LCA of Node x and Node y ` `    ``while` `((x < p -> data && y < p -> data) || ` `        ``(x > p -> data && y > p -> data)) ` `    ``{ ` `        ``// Checking if both the Node lie on the ` `        ``// left side of the parent p. ` `        ``if` `(x < p -> data && y < p -> data) ` `            ``p = p -> left; ` ` `  `        ``// Checking if both the Node lie on the ` `        ``// right side of the parent p. ` `        ``else` `if` `(x > p -> data && y > p -> data) ` `            ``p = p -> right; ` `    ``} ` ` `  `    ``// Return the maximum of maximum elements occur ` `    ``// in path from ancestor to both Node. ` `    ``return` `max(maxelpath(p, x), maxelpath(p, y)); ` `} ` ` `  ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``int` `arr[] = { 18, 36, 9, 6, 12, 10, 1, 8 }; ` `    ``int` `a = 1, b = 10; ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr); ` ` `  `    ``// Creating the root of Binary Search Tree ` `    ``struct` `Node *root = createNode(arr); ` ` `  `    ``// Inserting Nodes in Binary Search Tree ` `    ``for` `(``int` `i = 1; i < n; i++) ` `        ``insertNode(root, arr[i]); ` ` `  `    ``cout << maximumElement(root, a, b) << endl; ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java program to find maximum element in the path ` `// between two Nodes of Binary Search Tree. ` `class` `Solution ` `{ ` `     `  `static` `class` `Node ` `{ ` `     ``Node left, right; ` `    ``int` `data; ` `} ` `  `  `// Create and return a pointer of new Node. ` `static` `Node createNode(``int` `x) ` `{ ` `    ``Node p = ``new` `Node(); ` `    ``p . data = x; ` `    ``p . left = p . right = ``null``; ` `    ``return` `p; ` `} ` `  `  `// Insert a new Node in Binary Search Tree. ` `static` `void` `insertNode( Node root, ``int` `x) ` `{ ` `    ``Node p = root, q = ``null``; ` `  `  `    ``while` `(p != ``null``) ` `    ``{ ` `        ``q = p; ` `        ``if` `(p . data < x) ` `            ``p = p . right; ` `        ``else` `            ``p = p . left; ` `    ``} ` `  `  `    ``if` `(q == ``null``) ` `        ``p = createNode(x); ` `    ``else` `    ``{ ` `        ``if` `(q . data < x) ` `            ``q . right = createNode(x); ` `        ``else` `            ``q . left = createNode(x); ` `    ``} ` `} ` `  `  `// Return the maximum element between a Node ` `// and its given ancestor. ` `static` `int` `maxelpath(Node q, ``int` `x) ` `{ ` `    ``Node p = q; ` `  `  `    ``int` `mx = -``1``; ` `  `  `    ``// Traversing the path between ansector and ` `    ``// Node and finding maximum element. ` `    ``while` `(p . data != x) ` `    ``{ ` `        ``if` `(p . data > x) ` `        ``{ ` `            ``mx = Math.max(mx, p . data); ` `            ``p = p . left; ` `        ``} ` `        ``else` `        ``{ ` `            ``mx = Math.max(mx, p . data); ` `            ``p = p . right; ` `        ``} ` `    ``} ` `  `  `    ``return` `Math.max(mx, x); ` `} ` `  `  `// Return maximum element in the path between ` `// two given Node of BST. ` `static` `int` `maximumElement( Node root, ``int` `x, ``int` `y) ` `{ ` `    ``Node p = root; ` `  `  `    ``// Finding the LCA of Node x and Node y ` `    ``while` `((x < p . data && y < p . data) || ` `        ``(x > p . data && y > p . data)) ` `    ``{ ` `        ``// Checking if both the Node lie on the ` `        ``// left side of the parent p. ` `        ``if` `(x < p . data && y < p . data) ` `            ``p = p . left; ` `  `  `        ``// Checking if both the Node lie on the ` `        ``// right side of the parent p. ` `        ``else` `if` `(x > p . data && y > p . data) ` `            ``p = p . right; ` `    ``} ` `  `  `    ``// Return the maximum of maximum elements occur ` `    ``// in path from ancestor to both Node. ` `    ``return` `Math.max(maxelpath(p, x), maxelpath(p, y)); ` `} ` `  `  `  `  `// Driver Code ` `public` `static` `void` `main(String args[]) ` `{ ` `    ``int` `arr[] = { ``18``, ``36``, ``9``, ``6``, ``12``, ``10``, ``1``, ``8` `}; ` `    ``int` `a = ``1``, b = ``10``; ` `    ``int` `n =arr.length; ` `  `  `    ``// Creating the root of Binary Search Tree ` `     ``Node root = createNode(arr[``0``]); ` `  `  `    ``// Inserting Nodes in Binary Search Tree ` `    ``for` `(``int` `i = ``1``; i < n; i++) ` `        ``insertNode(root, arr[i]); ` `  `  `    ``System.out.println( maximumElement(root, a, b) ); ` `  `  `} ` `} ` `//contributed by Arnab Kundu  `

## Python3

# Python 3 program to find maximum element
# in the path between two Nodes of Binary
# Search Tree.

# Create and return a pointer of new Node.
class createNode:

# Constructor to create a new node
def __init__(self, data):
self.data = data
self.left = None
self.right = None

# Insert a new Node in Binary Search Tree.
def insertNode(root, x):
p, q = root, None

while p != None:
q = p
if p.data < x: p = p.right else: p = p.left if q == None: p = createNode(x) else: if q.data < x: q.right = createNode(x) else: q.left = createNode(x) # Return the maximum element between a # Node and its given ancestor. def maxelpath(q, x): p = q mx = -999999999999 # Traversing the path between ansector # and Node and finding maximum element. while p.data != x: if p.data > x:
mx = max(mx, p.data)
p = p.left
else:
mx = max(mx, p.data)
p = p.right

return max(mx, x)

# Return maximum element in the path
# between two given Node of BST.
def maximumElement(root, x, y):
p = root

# Finding the LCA of Node x and Node y
while ((x < p.data and y < p.data) or (x > p.data and y > p.data)):

# Checking if both the Node lie on
# the left side of the parent p.
if x < p.data and y < p.data: p = p.left # Checking if both the Node lie on # the right side of the parent p. elif x > p.data and y > p.data:
p = p.right

# Return the maximum of maximum elements
# occur in path from ancestor to both Node.
return max(maxelpath(p, x), maxelpath(p, y))

# Driver Code
if __name__ == ‘__main__’:
arr = [ 18, 36, 9, 6, 12, 10, 1, 8]
a, b = 1, 10
n = len(arr)

# Creating the root of Binary Search Tree
root = createNode(arr)

# Inserting Nodes in Binary Search Tree
for i in range(1,n):
insertNode(root, arr[i])

print(maximumElement(root, a, b))

# This code is contributed by PranchalK

## C#

 `using` `System; ` ` `  `// C# program to find maximum element in the path  ` `// between two Nodes of Binary Search Tree.  ` `public` `class` `Solution ` `{ ` ` `  `public` `class` `Node ` `{ ` `     ``public` `Node left, right; ` `    ``public` `int` `data; ` `} ` ` `  `// Create and return a pointer of new Node.  ` `public` `static` `Node createNode(``int` `x) ` `{ ` `    ``Node p = ``new` `Node(); ` `    ``p.data = x; ` `    ``p.left = p.right = ``null``; ` `    ``return` `p; ` `} ` ` `  `// Insert a new Node in Binary Search Tree.  ` `public` `static` `void` `insertNode(Node root, ``int` `x) ` `{ ` `    ``Node p = root, q = ``null``; ` ` `  `    ``while` `(p != ``null``) ` `    ``{ ` `        ``q = p; ` `        ``if` `(p.data < x) ` `        ``{ ` `            ``p = p.right; ` `        ``} ` `        ``else` `        ``{ ` `            ``p = p.left; ` `        ``} ` `    ``} ` ` `  `    ``if` `(q == ``null``) ` `    ``{ ` `        ``p = createNode(x); ` `    ``} ` `    ``else` `    ``{ ` `        ``if` `(q.data < x) ` `        ``{ ` `            ``q.right = createNode(x); ` `        ``} ` `        ``else` `        ``{ ` `            ``q.left = createNode(x); ` `        ``} ` `    ``} ` `} ` ` `  `// Return the maximum element between a Node  ` `// and its given ancestor.  ` `public` `static` `int` `maxelpath(Node q, ``int` `x) ` `{ ` `    ``Node p = q; ` ` `  `    ``int` `mx = -1; ` ` `  `    ``// Traversing the path between ansector and  ` `    ``// Node and finding maximum element.  ` `    ``while` `(p.data != x) ` `    ``{ ` `        ``if` `(p.data > x) ` `        ``{ ` `            ``mx = Math.Max(mx, p.data); ` `            ``p = p.left; ` `        ``} ` `        ``else` `        ``{ ` `            ``mx = Math.Max(mx, p.data); ` `            ``p = p.right; ` `        ``} ` `    ``} ` ` `  `    ``return` `Math.Max(mx, x); ` `} ` ` `  `// Return maximum element in the path between  ` `// two given Node of BST.  ` `public` `static` `int` `maximumElement(Node root, ``int` `x, ``int` `y) ` `{ ` `    ``Node p = root; ` ` `  `    ``// Finding the LCA of Node x and Node y  ` `    ``while` `((x < p.data && y < p.data) || (x > p.data && y > p.data)) ` `    ``{ ` `        ``// Checking if both the Node lie on the  ` `        ``// left side of the parent p.  ` `        ``if` `(x < p.data && y < p.data) ` `        ``{ ` `            ``p = p.left; ` `        ``} ` ` `  `        ``// Checking if both the Node lie on the  ` `        ``// right side of the parent p.  ` `        ``else` `if` `(x > p.data && y > p.data) ` `        ``{ ` `            ``p = p.right; ` `        ``} ` `    ``} ` ` `  `    ``// Return the maximum of maximum elements occur  ` `    ``// in path from ancestor to both Node.  ` `    ``return` `Math.Max(maxelpath(p, x), maxelpath(p, y)); ` `} ` ` `  ` `  `// Driver Code  ` `public` `static` `void` `Main(``string``[] args) ` `{ ` `    ``int``[] arr = ``new` `int``[] {18, 36, 9, 6, 12, 10, 1, 8}; ` `    ``int` `a = 1, b = 10; ` `    ``int` `n = arr.Length; ` ` `  `    ``// Creating the root of Binary Search Tree  ` `     ``Node root = createNode(arr); ` ` `  `    ``// Inserting Nodes in Binary Search Tree  ` `    ``for` `(``int` `i = 1; i < n; i++) ` `    ``{ ` `        ``insertNode(root, arr[i]); ` `    ``} ` ` `  `    ``Console.WriteLine(maximumElement(root, a, b)); ` ` `  `} ` `} ` ` `  `  ``//  This code is contributed by Shrikant13 `

Output :

```12
```

Time complexity : O(h) where h is height of BST

## tags:

Binary Search Tree LCA Binary Search Tree