Tutorialspoint.dev

Searching in an array where adjacent differ by at most k

A step array is an array of integer where each element has a difference of atmost k with its neighbor. Given a key x, we need to find the index value of k if multiple element exist return the first occurrence of key.

Examples:

Input : arr[] = {4, 5, 6, 7, 6}
           k = 1
           x = 6
Output : 2
The first index of 6 is 2.

Input : arr[] = {20, 40, 50, 70, 70, 60}  
          k = 20
          x = 60
Output : 5
The index of 60 is 5

This problem is mainly an extension of Search an element in an array where difference between adjacent elements is 1.

A Simple Approach is to traverse the given array one by one and compare every element with given element ‘x’. If matches, then return index.

The above solution can be Optimized using the fact that difference between all adjacent elements is at most k. The idea is to start comparing from the leftmost element and find the difference between current array element and x. Let this difference be ‘diff’. From the given property of array, we always know that x must be at-least ‘diff/k’ away, so instead of searching one by one, we jump ‘diff/k’.

Below is the implementation of above idea.

C++

// C++ program to search an element in an array 
// where difference between all elements is 1
#include<bits/stdc++.h>
using namespace std;
  
// x is the element to be searched in arr[0..n-1]
// such that all elements differ by at-most k.
int search(int arr[], int n, int x, int k)
{
    // Travers the given array starting from
    // leftmost element
    int i = 0;
    while (i < n)
    {
        // If x is found at index i
        if (arr[i] == x)
            return i;
  
        // Jump the difference between current
        // array element and x divided by k
        // We use max here to make sure that i
        // moves at-least one step ahead.
        i = i + max(1, abs(arr[i]-x)/k);
    }
  
    cout << "number is not present!";
    return -1;
}
  
// Driver program to test above function
int main()
{
    int arr[] = {2, 4, 5, 7, 7, 6};
    int x = 6;
    int k = 2;
    int n = sizeof(arr)/sizeof(arr[0]);
    cout << "Element " << x  << " is present at index "
         << search(arr, n, x, k);
    return 0;
}

Java

// Java program to search an element in 
// an array where difference between all
// elements is 1
  
import java.io.*;
  
class GFG {
      
    // x is the element to be searched 
    // in arr[0..n-1] such that all 
    // elements differ by at-most k.
    static int search(int arr[], int n, 
                            int x, int k)
    {
          
        // Travers the given array starting
        // from leftmost element
        int i = 0;
          
        while (i < n) {
              
            // If x is found at index i
            if (arr[i] == x)
                return i;
  
            // Jump the difference between 
            // current array element and x
            // divided by k We use max here
            // to make sure that i moves 
            // at-least one step ahead.
            i = i + Math.max(1, Math.abs(arr[i] 
                                      - x) / k);
        }
  
        System.out.println("number is "
                                "not present!");
        return -1;
    }
  
    // Driver program to test above function
    public static void main(String[] args)
    {
          
        int arr[] = { 2, 4, 5, 7, 7, 6 };
        int x = 6;
        int k = 2;
        int n = arr.length;
          
        System.out.println("Element " + x +
                        " is present at index "
                        + search(arr, n, x, k));
    }
}
  
// This code is contributed by vt_m

Python3

# Python 3 program to search an element in an array 
# where difference between all elements is 1
  
# x is the element to be searched in arr[0..n-1]
# such that all elements differ by at-most k.
def search(arr, n, x, k):
  
    # Travers the given array starting from
    # leftmost element
    i = 0
    while (i < n):
      
        # If x is found at index i
        if (arr[i] == x):
            return i
  
        # Jump the difference between current
        # array element and x divided by k
        # We use max here to make sure that i
        # moves at-least one step ahead.
        i = i + max(1, int(abs(arr[i] - x) / k))
      
  
    print("number is not present!")
    return -1
  
  
# Driver program to test above function
arr = [2, 4, 5, 7, 7, 6]
x = 6
k = 2
n = len(arr)
print("Element", x, "is present at index",search(arr, n, x, k))
  
# This code is contributed
# by Smitha Dinesh Semwal

C#

// C# program to search an element in 
// an array where difference between 
// all elements is 1
using System;
  
class GFG {
      
    // x is the element to be searched 
    // in arr[0..n-1] such that all 
    // elements differ by at-most k.
    static int search(int []arr, int n, 
                          int x, int k)
    {
          
        // Travers the given array starting
        // from leftmost element
        int i = 0;
          
        while (i < n) 
        {
              
            // If x is found at index i
            if (arr[i] == x)
                return i;
  
            // Jump the difference between 
            // current array element and x
            // divided by k We use max here
            // to make sure that i moves 
            // at-least one step ahead.
            i = i + Math.Max(1, Math.Abs(arr[i] 
                                    - x) / k);
        }
  
        Console.Write("number is "
                      "not present!");
        return -1;
    }
  
    // Driver Code
    public static void Main()
    {
          
        int []arr = { 2, 4, 5, 7, 7, 6 };
        int x = 6;
        int k = 2;
        int n = arr.Length;
          
        Console.Write("Element " + x + 
                      " is present at index "
                        search(arr, n, x, k));
    }
}
  
// This code is contributed by Nitin Mittal.

PHP

<?php
// PHP program to search an
// element in an array where
// difference between all 
// elements is 1
  
// x is the element to be 
// searched in arr[0..n-1]
// such that all elements 
// differ by at-most k.
function search($arr, $n, $x, $k)
{
      
    // Travers the given array
    // starting from leftmost element
    $i = 0;
    while ($i < $n)
    {
        // If x is found at index i
        if ($arr[$i] == $x)
            return $i;
  
        // Jump the difference between current
        // array element and x divided by k
        // We use max here to make sure that i
        // moves at-least one step ahead.
        $i = $i + max(1, abs($arr[$i] - $x) / $k);
    }
  
    echo "number is not present!";
    return -1;
}
  
// Driver Code
{
    $arr = array(2, 4, 5, 7, 7, 6);
    $x = 6;
    $k = 2;
    $n = sizeof($arr)/sizeof($arr[0]);
    echo "Element $x is present"
                     "at index ",
        search($arr, $n, $x, $k);
    return 0;
}
  
// This code is contributed by nitin mittal.
?>

Output:

Element 6 is present at index 5


This article is attributed to GeeksforGeeks.org

leave a comment

code

0 Comments

load comments

Subscribe to Our Newsletter