You are given a sequence of N integers and Q queries. In each query, you are given two parameters L and R. You have to find the smallest integer X such that 0 <= X < 2^31 and the sum of XOR of x with all elements is range [L, R] is maximum possible.
Examples :
Input : A = {20, 11, 18, 2, 13} Three queries as (L, R) pairs 1 3 3 5 2 4 Output : 2147483629 2147483645 2147483645
Approach: The binary representation of each element and X, we can observe that each bit is independent and the problem can be solved by iterating over each bit. Now basically for each bit we need to count the number of 1’s and 0’s in the given range, if the number of 1’s are more then you have to set that bit of X to 0 so that the sum is maximum after xor with X else if number of 0’s are more then you have to set that bit of X to 1. If the number of 1’s and 0’s are equal then we can set that bit of X to any one of 1 or 0 because it will not affect the sum, but we have to minimize the value of X so we will take that bit 0.
Now, to optimize the solution we can pre-calculate the count of 1’s at each bit position of the numbers up to that position by making a prefix array this will take O(n) time. Now for each query number of 1’s will be the number of 1’s up to Rth position – number of 1’s up to (L-1)th position.
C++
// CPP program to find smallest integer X // such that sum of its XOR with range is // maximum. #include <bits/stdc++.h> using namespace std; #define MAX 2147483647 int one[100001][32]; // Function to make prefix array which // counts 1's of each bit up to that number void make_prefix( int A[], int n) { for ( int j = 0; j < 32; j++) one[0][j] = 0; // Making a prefix array which sums // number of 1's up to that position for ( int i = 1; i <= n; i++) { int a = A[i - 1]; for ( int j = 0; j < 32; j++) { int x = pow (2, j); // If j-th bit of a number is set then // add one to previously counted 1's if (a & x) one[i][j] = 1 + one[i - 1][j]; else one[i][j] = one[i - 1][j]; } } } // Function to find X int Solve( int L, int R) { int l = L, r = R; int tot_bits = r - l + 1; // Initially taking maximum value all bits 1 int X = MAX; // Iterating over each bit for ( int i = 0; i < 31; i++) { // get 1's at ith bit between the // range L-R by subtracting 1's till // Rth number - 1's till L-1th number int x = one[r][i] - one[l - 1][i]; // If 1's are more than or equal to 0's // then unset the ith bit from answer if (x >= tot_bits - x) { int ith_bit = pow (2, i); // Set ith bit to 0 by doing // Xor with 1 X = X ^ ith_bit; } } return X; } // Driver program int main() { // Taking inputs int n = 5, q = 3; int A[] = { 210, 11, 48, 22, 133 }; int L[] = { 1, 4, 2 }, R[] = { 3, 14, 4 }; make_prefix(A, n); for ( int j = 0; j < q; j++) cout << Solve(L[j], R[j]) << endl; return 0; } |
Java
// Java program to find smallest integer X // such that sum of its XOR with range is // maximum. import java.lang.Math; class GFG { private static final int MAX = 2147483647 ; static int [][] one = new int [ 100001 ][ 32 ]; // Function to make prefix array which counts // 1's of each bit up to that number static void make_prefix( int A[], int n) { for ( int j = 0 ; j < 32 ; j++) one[ 0 ][j] = 0 ; // Making a prefix array which sums // number of 1's up to that position for ( int i = 1 ; i <= n; i++) { int a = A[i - 1 ]; for ( int j = 0 ; j < 32 ; j++) { int x = ( int )Math.pow( 2 , j); // If j-th bit of a number is set then // add one to previously counted 1's if ((a & x) != 0 ) one[i][j] = 1 + one[i - 1 ][j]; else one[i][j] = one[i - 1 ][j]; } } } // Function to find X static int Solve( int L, int R) { int l = L, r = R; int tot_bits = r - l + 1 ; // Initially taking maximum // value all bits 1 int X = MAX; // Iterating over each bit for ( int i = 0 ; i < 31 ; i++) { // get 1's at ith bit between the range // L-R by subtracting 1's till // Rth number - 1's till L-1th number int x = one[r][i] - one[l - 1 ][i]; // If 1's are more than or equal to 0's // then unset the ith bit from answer if (x >= tot_bits - x) { int ith_bit = ( int )Math.pow( 2 , i); // Set ith bit to 0 by // doing Xor with 1 X = X ^ ith_bit; } } return X; } // Driver program public static void main(String[] args) { // Taking inputs int n = 5 , q = 3 ; int A[] = { 210 , 11 , 48 , 22 , 133 }; int L[] = { 1 , 4 , 2 }, R[] = { 3 , 14 , 4 }; make_prefix(A, n); for ( int j = 0 ; j < q; j++) System.out.println(Solve(L[j], R[j])); } } // This code is contributed by Smitha |
Python3
# Python3 program to find smallest integer X # such that sum of its XOR with range is # maximum. import math one = [[ 0 for x in range ( 32 )] for y in range ( 100001 )] MAX = 2147483647 # Function to make prefix array # which counts 1's of each bit # up to that number def make_prefix(A, n) : global one, MAX for j in range ( 0 , 32 ) : one[ 0 ][j] = 0 # Making a prefix array which # sums number of 1's up to # that position for i in range ( 1 , n + 1 ) : a = A[i - 1 ] for j in range ( 0 , 32 ) : x = int (math. pow ( 2 , j)) # If j-th bit of a number # is set then add one to # previously counted 1's if (a & x) : one[i][j] = 1 + one[i - 1 ][j] else : one[i][j] = one[i - 1 ][j] # Function to find X def Solve(L, R) : global one, MAX l = L r = R tot_bits = r - l + 1 # Initially taking maximum # value all bits 1 X = MAX # Iterating over each bit for i in range ( 0 , 31 ) : # get 1's at ith bit between the # range L-R by subtracting 1's till # Rth number - 1's till L-1th number x = one[r][i] - one[l - 1 ][i] # If 1's are more than or equal # to 0's then unset the ith bit # from answer if (x > = (tot_bits - x)) : ith_bit = pow ( 2 , i) # Set ith bit to 0 by # doing Xor with 1 X = X ^ ith_bit return X # Driver Code n = 5 q = 3 A = [ 210 , 11 , 48 , 22 , 133 ] L = [ 1 , 4 , 2 ] R = [ 3 , 14 , 4 ] make_prefix(A, n) for j in range ( 0 , q) : print (Solve(L[j], R[j]),end = "
" ) # This code is contributed by # Manish Shaw(manishshaw1) |
C#
// C# program to find smallest integer X // such that sum of its XOR with range is // maximum. using System; using System.Collections.Generic; class GFG{ static int MAX = 2147483647; static int [,]one = new int [100001,32]; // Function to make prefix // array which counts 1's // of each bit up to that number static void make_prefix( int []A, int n) { for ( int j = 0; j < 32; j++) one[0,j] = 0; // Making a prefix array which sums // number of 1's up to that position for ( int i = 1; i <= n; i++) { int a = A[i - 1]; for ( int j = 0; j < 32; j++) { int x = ( int )Math.Pow(2, j); // If j-th bit of a number is set then // add one to previously counted 1's if ((a & x) != 0) one[i, j] = 1 + one[i - 1, j]; else one[i,j] = one[i - 1, j]; } } } // Function to find X static int Solve( int L, int R) { int l = L, r = R; int tot_bits = r - l + 1; // Initially taking maximum // value all bits 1 int X = MAX; // Iterating over each bit for ( int i = 0; i < 31; i++) { // get 1's at ith bit between the // range L-R by subtracting 1's till // Rth number - 1's till L-1th number int x = one[r, i] - one[l - 1, i]; // If 1's are more than or // equal to 0's then unset // the ith bit from answer if (x >= tot_bits - x) { int ith_bit = ( int )Math.Pow(2, i); // Set ith bit to 0 by doing // Xor with 1 X = X ^ ith_bit; } } return X; } // Driver Code public static void Main() { // Taking inputs int n = 5, q = 3; int []A = {210, 11, 48, 22, 133}; int []L = {1, 4, 2}; int []R = {3, 14, 4}; make_prefix(A, n); for ( int j = 0; j < q; j++) Console.WriteLine(Solve(L[j], R[j])); } } // This code is contributed by // Manish Shaw (manishshaw1) |
PHP
<?php error_reporting (0); // PHP program to find smallest integer X // such that sum of its XOR with range is // maximum. $one = array (); $MAX = 2147483647; // Function to make prefix array // which counts 1's of each bit // up to that number function make_prefix( $A , $n ) { global $one , $MAX ; for ( $j = 0; $j < 32; $j ++) $one [0][ $j ] = 0; // Making a prefix array which // sums number of 1's up to // that position for ( $i = 1; $i <= $n ; $i ++) { $a = $A [ $i - 1]; for ( $j = 0; $j < 32; $j ++) { $x = pow(2, $j ); // If j-th bit of a number // is set then add one to // previously counted 1's if ( $a & $x ) $one [ $i ][ $j ] = 1 + $one [ $i - 1][ $j ]; else $one [ $i ][ $j ] = $one [ $i - 1][ $j ]; } } } // Function to find X function Solve( $L , $R ) { global $one , $MAX ; $l = $L ; $r = $R ; $tot_bits = $r - $l + 1; // Initially taking maximum // value all bits 1 $X = $MAX ; // Iterating over each bit for ( $i = 0; $i < 31; $i ++) { // get 1's at ith bit between the // range L-R by subtracting 1's till // Rth number - 1's till L-1th number $x = $one [ $r ][ $i ] - $one [ $l - 1][ $i ]; // If 1's are more than or equal // to 0's then unset the ith bit // from answer if ( $x >= ( $tot_bits - $x )) { $ith_bit = pow(2, $i ); // Set ith bit to 0 by // doing Xor with 1 $X = $X ^ $ith_bit ; } } return $X ; } // Driver Code $n = 5; $q = 3; $A = [ 210, 11, 48, 22, 133 ]; $L = [ 1, 4, 2 ]; $R = [ 3, 14, 4 ]; make_prefix( $A , $n ); for ( $j = 0; $j < $q ; $j ++) echo (Solve( $L [ $j ], $R [ $j ]). "
" ); // This code is contributed by // Manish Shaw(manishshaw1) ?> |
Output :
2147483629 2147483647 2147483629
leave a comment
0 Comments