# Newton’s Divided Difference Interpolation Formula

Interpolation is an estimation of a value within two known values in a sequence of values.

Newton’s divided difference interpolation formula is a interpolation technique used when the interval difference is not same for all sequence of values.

Suppose f(x0), f(x1), f(x2)………f(xn) be the (n+1) values of the function y=f(x) corresponding to the arguments x=x0, x1, x2…xn, where interval differences are not same
Then the first divided difference is given by

The second divided difference is given by

and so on…
Divided differences are symmetric with respect to the arguments i.e independent of the order of arguments.
so,
f[x0, x1]=f[x1, x0]
f[x0, x1, x2]=f[x2, x1, x0]=f[x1, x2, x0]

By using first divided difference, second divided difference as so on .A table is formed which is called the divided difference table.

Divided difference table:

NEWTON’S DIVIDED DIFFERENCE INTERPOLATION FORMULA

blockquote>

Examples:

Input : Value at 7

Output :

Value at 7 is 13.47

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Below is the implementation for Newton’s divided difference interpolation method.

## C++

 // CPP program for implementing // Newton divided difference formula #include using namespace std;    // Function to find the product term float proterm(int i, float value, float x[]) {     float pro = 1;     for (int j = 0; j < i; j++) {         pro = pro * (value - x[j]);     }     return pro; }    // Function for calculating // divided difference table void dividedDiffTable(float x[], float y[][10], int n) {     for (int i = 1; i < n; i++) {         for (int j = 0; j < n - i; j++) {             y[j][i] = (y[j][i - 1] - y[j + 1]                          [i - 1]) / (x[j] - x[i + j]);         }     } }    // Function for applying Newton's // divided difference formula float applyFormula(float value, float x[],                    float y[][10], int n) {     float sum = y[0][0];        for (int i = 1; i < n; i++) {       sum = sum + (proterm(i, value, x) * y[0][i]);     }     return sum; }    // Function for displaying  // divided difference table void printDiffTable(float y[][10],int n) {     for (int i = 0; i < n; i++) {         for (int j = 0; j < n - i; j++) {             cout << setprecision(4) <<                                   y[i][j] << " ";         }         cout << " ";     } }    // Driver Function int main() {     // number of inputs given     int n = 4;     float value, sum, y[10][10];     float x[] = { 5, 6, 9, 11 };        // y[][] is used for divided difference     // table where y[][0] is used for input     y[0][0] = 12;     y[1][0] = 13;     y[2][0] = 14;     y[3][0] = 16;        // calculating divided difference table     dividedDiffTable(x, y, n);        // displaying divided difference table     printDiffTable(y,n);        // value to be interpolated     value = 7;        // printing the value     cout << " Value at " << value << " is "                << applyFormula(value, x, y, n) << endl;     return 0; }

## Java

 // Java program for implementing // Newton divided difference formula import java.text.*; import java.math.*;    class GFG{ // Function to find the product term static float proterm(int i, float value, float x[]) {     float pro = 1;     for (int j = 0; j < i; j++) {         pro = pro * (value - x[j]);     }     return pro; }    // Function for calculating // divided difference table static void dividedDiffTable(float x[], float y[][], int n) {     for (int i = 1; i < n; i++) {         for (int j = 0; j < n - i; j++) {             y[j][i] = (y[j][i - 1] - y[j + 1]                         [i - 1]) / (x[j] - x[i + j]);         }     } }    // Function for applying Newton's // divided difference formula static float applyFormula(float value, float x[],                 float y[][], int n) {     float sum = y[0][0];        for (int i = 1; i < n; i++) {     sum = sum + (proterm(i, value, x) * y[0][i]);     }     return sum; }    // Function for displaying  // divided difference table static void printDiffTable(float y[][],int n) {     DecimalFormat df = new DecimalFormat("#.####");     df.setRoundingMode(RoundingMode.HALF_UP);            for (int i = 0; i < n; i++) {         for (int j = 0; j < n - i; j++) {             String str1 = df.format(y[i][j]);             System.out.print(str1+" ");         }         System.out.println("");     } }    // Driver Function public static void main(String[] args) {     // number of inputs given     int n = 4;     float value, sum;     float y[][]=new float[10][10];     float x[] = { 5, 6, 9, 11 };        // y[][] is used for divided difference     // table where y[][0] is used for input     y[0][0] = 12;     y[1][0] = 13;     y[2][0] = 14;     y[3][0] = 16;        // calculating divided difference table     dividedDiffTable(x, y, n);        // displaying divided difference table     printDiffTable(y,n);        // value to be interpolated     value = 7;        // printing the value     DecimalFormat df = new DecimalFormat("#.##");     df.setRoundingMode(RoundingMode.HALF_UP);            System.out.println(" Value at "+df.format(value)+" is "             +df.format(applyFormula(value, x, y, n))); } } // This code is contributed by mits

## Python3

# Python3 program for implementing
# Newton divided difference formula

# Function to find the product term
def proterm(i, value, x):
pro = 1;
for j in range(i):
pro = pro * (value – x[j]);
return pro;

# Function for calculating
# divided difference table
def dividedDiffTable(x, y, n):

for i in range(1, n):
for j in range(n – i):
y[j][i] = ((y[j][i – 1] – y[j + 1][i – 1]) /
(x[j] – x[i + j]));
return y;

# Function for applying Newton’s
# divided difference formula
def applyFormula(value, x, y, n):

sum = y[0][0];

for i in range(1, n):
sum = sum + (proterm(i, value, x) * y[0][i]);

return sum;

# Function for displaying divided
# difference table
def printDiffTable(y, n):

for i in range(n):
for j in range(n – i):
print(round(y[i][j], 4), “ ”,
end = ” “);

print(“”);

# Driver Code

# number of inputs given
n = 4;
y = [[0 for i in range(10)]
for j in range(10)];
x = [ 5, 6, 9, 11 ];

# y[][] is used for divided difference
# table where y[][0] is used for input
y[0][0] = 12;
y[1][0] = 13;
y[2][0] = 14;
y[3][0] = 16;

# calculating divided difference table
y=dividedDiffTable(x, y, n);

# displaying divided difference table
printDiffTable(y, n);

# value to be interpolated
value = 7;

# printing the value
print(“ Value at”, value, “is”,
round(applyFormula(value, x, y, n), 2))

# This code is contributed by mits

## C#

 // C# program for implementing  // Newton divided difference formula  using System;    class GFG{  // Function to find the product term  static float proterm(int i, float value, float[] x)  {      float pro = 1;      for (int j = 0; j < i; j++) {          pro = pro * (value - x[j]);      }      return pro;  }     // Function for calculating  // divided difference table  static void dividedDiffTable(float[] x, float[,] y, int n)  {      for (int i = 1; i < n; i++) {          for (int j = 0; j < n - i; j++) {              y[j,i] = (y[j,i - 1] - y[j + 1,i - 1]) / (x[j] - x[i + j]);          }      }  }     // Function for applying Newton's  // divided difference formula  static float applyFormula(float value, float[] x,                  float[,] y, int n)  {      float sum = y[0,0];         for (int i = 1; i < n; i++) {      sum = sum + (proterm(i, value, x) * y[0,i]);      }      return sum;  }     // Function for displaying  // divided difference table  static void printDiffTable(float[,] y,int n)  {      for (int i = 0; i < n; i++) {          for (int j = 0; j < n - i; j++) {              Console.Write(Math.Round(y[i,j],4)+" ");          }          Console.WriteLine("");      }  }     // Driver Function  public static void Main()  {      // number of inputs given      int n = 4;      float value;      float[,] y=new float[10,10];      float[] x = { 5, 6, 9, 11 };         // y[][] is used for divided difference      // table where y[][0] is used for input      y[0,0] = 12;      y[1,0] = 13;      y[2,0] = 14;      y[3,0] = 16;         // calculating divided difference table      dividedDiffTable(x, y, n);         // displaying divided difference table      printDiffTable(y,n);         // value to be interpolated      value = 7;         // printing the value             Console.WriteLine(" Value at "+(value)+" is "             +Math.Round(applyFormula(value, x, y, n),2));  }  }  // This code is contributed by mits

## PHP



Output:

12     1     -0.1667     0.05
13     0.3333     0.1333
14     1
16

Value at 7 is 13.47