Tutorialspoint.dev

Digital Logic | Code Converters – BCD(8421) to/from Excess-3

Prerequisite – Number System and base conversions

Excess-3 binary code is a unweighted self-complementary BCD code.
Self-Complementary property means that the 1’s complement of an excess-3 number is the excess-3 code of the 9’s complement of the corresponding decimal number. This property is useful since a decimal number can be nines’ complemented (for subtraction) as easily as a binary number can be ones’ complemented; just by inverting all bits.
For example, the excess-3 code for 3(0011) is 0110 and to find the excess-3 code of the complement of 3, we just need to find the 1’s complement of 0110 -> 1001, which is also the excess-3 code for the 9’s complement of 3 -> (9-3) = 6.

Converting BCD(8421) to Excess-3 –

As is clear by the name, a BCD digit can be converted to it’s corresponding Excess-3 code by simply adding 3 to it.
Let A,:B,:C,:and:D be the bits representing the binary numbers, where D is the LSB and A is the MSB, and
Let w,:x,:y,:and:z be the bits representing the gray code of the binary numbers, where z is the LSB and w is the MSB.
The truth table for the conversion is given below. The X’s mark don’t care conditions.
 egin{tabular}{||c|c|c|c||c|c|c|c||} hline  multicolumn{4}{||c||}{BCD(8421)} & multicolumn{4}{|c||}{Excess-3}\ hline  A & B & C & D & w & x & y & z \ hline hline  0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \  hline  0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \  hline  0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \  hline  0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \  hline hline  0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \  hline  0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \  hline  0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \  hline  0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \  hline hline  1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \  hline  1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \  hline  1 & 0 & 1 & 0 & X & X & X & X \  hline  1 & 0 & 1 & 1 & X & X & X & X \  hline hline  1 & 1 & 0 & 0 & X & X & X & X \  hline  1 & 1 & 0 & 1 & X & X & X & X \  hline  1 & 1 & 1 & 0 & X & X & X & X \ hline  1 & 1 & 1 & 1 & X & X & X & X \ hline hline end{tabular}
To find the corresponding digital circuit, we will use the K-Map technique for each of the Excess-3 code bits as output with all of the bits of the BCD number as input.

35777

Corresponding minimized Boolean expressions for Excess-3 code bits –
 w = A+BC+BD\ x = B^prime C + B^prime D +BC^prime D^prime\ y = CD + C^prime D^prime \ z = D^prime
The corresponding digital circuit-



Converting Excess-3 to BCD(8421) –

Excess-3 code can be converted back to BCD in the same manner.
Let A,:B,:C,:and:D be the bits representing the binary numbers, where D is the LSB and A is the MSB, and
Let w,:x,:y,:and:z be the bits representing the gray code of the binary numbers, where z is the LSB and w is the MSB.
The truth table for the conversion is given below. The X’s mark don’t care conditions.
 egin{tabular}{||c|c|c|c||c|c|c|c||} hline  multicolumn{4}{||c||}{Excess-3} & multicolumn{4}{|c||}{BCD}\ hline  w & x & y & z & A & B & C & D \ hline hline  0 & 0 & 0 & 0 & X & X & X & X \  hline  0 & 0 & 0 & 1 & X & X & X & X \  hline  0 & 0 & 1 & 0 & X & X & X & X \  hline  0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \  hline hline  0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \  hline  0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \  hline  0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \  hline  0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \  hline hline  1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \  hline  1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \  hline  1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \  hline  1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \  hline hline  1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \  hline  1 & 1 & 0 & 1 & X & X & X & X \  hline  1 & 1 & 1 & 0 & X & X & X & X \ hline  1 & 1 & 1 & 1 & X & X & X & X \ hline hline end{tabular}
K-Map for D-

K-Map for C-

K-Map for B-

K-Map for A-
<img src="
Corresponding minimized boolean expressions for Excess-3 code bits –
 A = wx+wyz\ B = x^prime y^prime + x^prime z^prime +xyz\ C = y^prime z+ yz^prime \ D = z^prime
The corresponding digital circuit –
Here E_3,:E_2,:E_1,:and:E_0 correspond to w,:x,:y,:and:z and B_3,:B_2,:B_1,:and:B_0 correspond to A,:B,:C,:and:D.

Excess-3 to BCD

References-

Digital Design, 5th edition by Morris Mano and Michael Ciletti
Excess-3 – Wikipedia

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



This article is attributed to GeeksforGeeks.org

You Might Also Like

leave a comment

code

0 Comments

load comments

Subscribe to Our Newsletter