# 2D Transformation in Computer Graphics | Set 1 (Scaling of Objects)

A scaling transformation alters size of an object. In the scaling process, we either compress or expand the dimension of the object.
Scaling operation can be achieved by multiplying each vertex coordinate (x, y) of the polygon by scaling factor sx and sy to produce the transformed coordinates as (x’, y’).
So, x’ = x * sx and y’ = y * sy.
The scaling factor sx, sy scales the object in X and Y direction respectively. So, the above equation can be represented in matrix form:

Or P’ = S . P
Scaling process:

Note: If the scaling factor S is less than 1, then we reduce the size of the object. If the scaling factor S is greater than 1, then we increase size of the object.

Algorithm:

```1. Make a 2x2 scaling matrix S as:
Sx 0
0  Sy
2. For each point of the polygon.
(i) Make a 2x1 matrix P, where P[0][0] equals
to x coordinate of the point and P[1][0]
equals to y coordinate of the point.
(ii) Multiply scaling matrix S with point
matrix P to get the new coordinate.
3. Draw the polygon using new coordinates.
```

Below is C implementation:

 `// C program to demonstrate scaling of abjects ` `#include ` `#include ` ` `  `// Matrix Multiplication to find new Coordinates. ` `// s[][] is scaling matrix. p[][] is to store ` `// points that needs to be scaled. ` `// p[0][0] is x coordinate of point. ` `// p[1][0] is y coordinate of given point. ` `void` `findNewCoordinate(``int` `s[][2], ``int` `p[][1]) ` `{ ` `    ``int` `temp[2][1] = { 0 }; ` ` `  `    ``for` `(``int` `i = 0; i < 2; i++) ` `        ``for` `(``int` `j = 0; j < 1; j++) ` `            ``for` `(``int` `k = 0; k < 2; k++) ` `                ``temp[i][j] += (s[i][k] * p[k][j]); ` ` `  `    ``p[0][0] = temp[0][0]; ` `    ``p[1][0] = temp[1][0]; ` `} ` ` `  `// Scaling the Polygon ` `void` `scale(``int` `x[], ``int` `y[], ``int` `sx, ``int` `sy) ` `{ ` `    ``// Triangle before Scaling ` `    ``line(x[0], y[0], x[1], y[1]); ` `    ``line(x[1], y[1], x[2], y[2]); ` `    ``line(x[2], y[2], x[0], y[0]); ` ` `  `    ``// Initializing the Scaling Matrix. ` `    ``int` `s[2][2] = { sx, 0, 0, sy }; ` `    ``int` `p[2][1]; ` ` `  `    ``// Scaling the triangle ` `    ``for` `(``int` `i = 0; i < 3; i++) ` `    ``{ ` `        ``p[0][0] = x[i]; ` `        ``p[1][0] = y[i]; ` ` `  `        ``findNewCoordinate(s, p); ` ` `  `        ``x[i] = p[0][0]; ` `        ``y[i] = p[1][0]; ` `    ``} ` ` `  `    ``// Triangle after Scaling ` `    ``line(x[0], y[0], x[1], y[1]); ` `    ``line(x[1], y[1], x[2], y[2]); ` `    ``line(x[2], y[2], x[0], y[0]); ` `} ` ` `  `// Driven Program ` `int` `main() ` `{ ` `    ``int` `x[] = { 100, 200, 300 }; ` `    ``int` `y[] = { 200, 100, 200 }; ` `    ``int` `sx = 2, sy = 2; ` ` `  `    ``int` `gd, gm; ` `    ``detectgraph(&gd, &gm); ` `    ``initgraph(&gd, &gm,``" "``); ` ` `  `    ``scale(x, y, sx,sy); ` `    ``getch(); ` ` `  `    ``return` `0; ` `} `

Output: