External Sorting

External sorting is a term for a class of sorting algorithms that can handle massive amounts of data. External sorting is required when the data being sorted do not fit into the main memory of a computing device (usually RAM) and instead they must reside in the slower external memory (usually a hard drive). External sorting typically uses a hybrid sort-merge strategy. In the sorting phase, chunks of data small enough to fit in main memory are read, sorted, and written out to a temporary file. In the merge phase, the sorted sub-files are combined into a single larger file.

One example of external sorting is the external merge sort algorithm, which sorts chunks that each fit in RAM, then merges the sorted chunks together. We first divide the file into runs such that the size of a run is small enough to fit into main memory. Then sort each run in main memory using merge sort sorting algorithm. Finally merge the resulting runs together into successively bigger runs, until the file is sorted.

Prerequisite for the algorithm/code:
MergeSort : Used for sort individual runs (a run is part of file that is small enough to fit in main memory)
Merge K Sorted Arrays : Used to merge sorted runs.

Below are the steps used in C++ implementation.

input_file  : Name of input file. input.txt
output_file : Name of output file, output.txt
run_size : Size of a run (can fit in RAM)
num_ways : Number of runs to be merged

1) Read input_file such that at most 'run_size' elements
   are read at a time. Do following for the every run read
   in an array.
      a) Sort the run using MergeSort.
      b) Store the sorted run in a temporary file, say 'i' 
         for i'th run.
2) Merge the sorted files using the approach discussed here

Following is C++ implementation of above steps.

// C++ program to implement external sorting using 
// merge sort
#include <bits/stdc++.h>
using namespace std;
struct MinHeapNode
    // The element to be stored
    int element;
    // index of the array from which the element is taken
    int i;
// Prototype of a utility function to swap two min heap nodes
void swap(MinHeapNode* x, MinHeapNode* y);
// A class for Min Heap
class MinHeap
    MinHeapNode* harr; // pointer to array of elements in heap
    int heap_size;     // size of min heap
    // Constructor: creates a min heap of given size
    MinHeap(MinHeapNode a[], int size);
    // to heapify a subtree with root at given index
    void MinHeapify(int);
    // to get index of left child of node at index i
    int left(int i) { return (2 * i + 1); }
    // to get index of right child of node at index i
    int right(int i) { return (2 * i + 2); }
    // to get the root
    MinHeapNode getMin() {  return harr[0]; }
    // to replace root with new node x and heapify()
    // new root
    void replaceMin(MinHeapNode x)
        harr[0] = x;
// Constructor: Builds a heap from a given array a[]
// of given size
MinHeap::MinHeap(MinHeapNode a[], int size)
    heap_size = size;
    harr = a; // store address of array
    int i = (heap_size - 1) / 2;
    while (i >= 0)
// A recursive method to heapify a subtree with root
// at given index. This method assumes that the
// subtrees are already heapified
void MinHeap::MinHeapify(int i)
    int l = left(i);
    int r = right(i);
    int smallest = i;
    if (l < heap_size && harr[l].element < harr[i].element)
        smallest = l;
    if (r < heap_size && harr[r].element < harr[smallest].element)
        smallest = r;
    if (smallest != i)
        swap(&harr[i], &harr[smallest]);
// A utility function to swap two elements
void swap(MinHeapNode* x, MinHeapNode* y)
    MinHeapNode temp = *x;
    *x = *y;
    *y = temp;
// Merges two subarrays of arr[].
// First subarray is arr[l..m]
// Second subarray is arr[m+1..r]
void merge(int arr[], int l, int m, int r)
    int i, j, k;
    int n1 = m - l + 1;
    int n2 = r - m;
    /* create temp arrays */
    int L[n1], R[n2];
    /* Copy data to temp arrays L[] and R[] */
    for(i = 0; i < n1; i++)
        L[i] = arr[l + i];
    for(j = 0; j < n2; j++)
        R[j] = arr[m + 1 + j];
    /* Merge the temp arrays back into arr[l..r]*/
    i = 0; // Initial index of first subarray
    j = 0; // Initial index of second subarray
    k = l; // Initial index of merged subarray
    while (i < n1 && j < n2)
        if (L[i] <= R[j])
            arr[k++] = L[i++];
            arr[k++] = R[j++];
    /* Copy the remaining elements of L[], if there
       are any */
    while (i < n1)
        arr[k++] = L[i++];
    /* Copy the remaining elements of R[], if there
       are any */
    while(j < n2)
        arr[k++] = R[j++];
/* l is for left index and r is right index of the
   sub-array of arr to be sorted */
void mergeSort(int arr[], int l, int r)
    if (l < r)
        // Same as (l+r)/2, but avoids overflow for
        // large l and h
        int m = l + (r - l) / 2;
        // Sort first and second halves
        mergeSort(arr, l, m);
        mergeSort(arr, m + 1, r);
        merge(arr, l, m, r);
FILE* openFile(char* fileName, char* mode)
    FILE* fp = fopen(fileName, mode);
    if (fp == NULL)
        perror("Error while opening the file. ");
    return fp;
// Merges k sorted files.  Names of files are assumed
// to be 1, 2, 3, ... k
void mergeFiles(char *output_file, int n, int k)
    FILE* in[k];
    for (int i = 0; i < k; i++)
        char fileName[2];
        // convert i to string
        snprintf(fileName, sizeof(fileName), "%d", i);
        // Open output files in read mode.
        in[i] = openFile(fileName, "r");
    FILE *out = openFile(output_file, "w");
    // Create a min heap with k heap nodes.  Every heap node
    // has first element of scratch output file
    MinHeapNode* harr = new MinHeapNode[k];
    int i;
    for (i = 0; i < k; i++)
        // break if no output file is empty and
        // index i will be no. of input files
        if (fscanf(in[i], "%d ", &harr[i].element) != 1)
        harr[i].i = i; // Index of scratch output file
    MinHeap hp(harr, i); // Create the heap
    int count = 0;
    // Now one by one get the minimum element from min
    // heap and replace it with next element.
    // run till all filled input files reach EOF
    while (count != i)
        // Get the minimum element and store it in output file
        MinHeapNode root = hp.getMin();
        fprintf(out, "%d ", root.element);
        // Find the next element that will replace current
        // root of heap. The next element belongs to same
        // input file as the current min element.
        if (fscanf(in[root.i], "%d ", &root.element) != 1 )
            root.element = INT_MAX;
        // Replace root with next element of input file
    // close input and output files
    for (int i = 0; i < k; i++)
// Using a merge-sort algorithm, create the initial runs
// and divide them evenly among the output files
void createInitialRuns(char *input_file, int run_size,
                       int num_ways)
    // For big input file
    FILE *in = openFile(input_file, "r");
    // output scratch files
    FILE* out[num_ways];
    char fileName[2];
    for (int i = 0; i < num_ways; i++)
        // convert i to string
        snprintf(fileName, sizeof(fileName), "%d", i);
        // Open output files in write mode.
        out[i] = openFile(fileName, "w");
    // allocate a dynamic array large enough
    // to accommodate runs of size run_size
    int* arr = (int*)malloc(run_size * sizeof(int));
    bool more_input = true;
    int next_output_file = 0;
    int i;
    while (more_input)
        // write run_size elements into arr from input file
        for (i = 0; i < run_size; i++)
            if (fscanf(in, "%d ", &arr[i]) != 1)
                more_input = false;
        // sort array using merge sort
        mergeSort(arr, 0, i - 1);
        // write the records to the appropriate scratch output file
        // can't assume that the loop runs to run_size
        // since the last run's length may be less than run_size
        for (int j = 0; j < i; j++)
            fprintf(out[next_output_file], "%d ", arr[j]);
    // close input and output files
    for (int i = 0; i < num_ways; i++)
// For sorting data stored on disk
void externalSort(char* input_file,  char *output_file,
                  int num_ways, int run_size)
    // read the input file, create the initial runs,
    // and assign the runs to the scratch output files
    createInitialRuns(input_file, run_size, num_ways);
    // Merge the runs using the K-way merging
    mergeFiles(output_file, run_size, num_ways);
// Driver program to test above
int main()
    // No. of Partitions of input file.
    int num_ways = 10;
    // The size of each partition
    int run_size = 1000;
    char input_file[] = "input.txt";
    char output_file[] = "output.txt";
    FILE* in = openFile(input_file, "w");
    // generate input
    for (int i = 0; i < num_ways * run_size; i++)
        fprintf(in, "%d ", rand());
    externalSort(input_file, output_file, num_ways,
    return 0;

This code won’t work on online compiler as it requires file creation permissions. When run local machine, it produces sample input file “input.txt” with 10000 random numbers. It sorts the numbers and puts the sorted numbers in a file “output.txt”. It also generates files with names 1, 2, .. to store sorted runs.

References :

This article is attributed to GeeksforGeeks.org

You Might Also Like

leave a comment



load comments

Subscribe to Our Newsletter