Tutorialspoint.dev

K’th Smallest/Largest Element in Unsorted Array | Set 2 (Expected Linear Time)

We recommend to read following post as a prerequisite of this post.

K’th Smallest/Largest Element in Unsorted Array | Set 1

Given an array and a number k where k is smaller than size of array, we need to find the k’th largest element in the given array. It is given that ll array elements are distinct.

Examples:

Input: arr[] = {7, 10, 4, 3, 20, 15}
       k = 3
Output: 7

Input: arr[] = {7, 10, 4, 3, 20, 15}
       k = 4
Output: 10

We have discussed three different solutions here.



In this post method 4 is discussed which is mainly an extension of method 3 (QuickSelect) discussed in the previous post.

C++

// C++ implementation of above implementation
#include<iostream>
#include<climits>
#include<cstdlib>
using namespace std;
  
int randomPartition(int arr[], int l, int r);
  
// This function returns k'th smallest element in arr[l..r] using
// QuickSort based method.  ASSUMPTION: ALL ELEMENTS IN ARR[] ARE DISTINCT
int kthSmallest(int arr[], int l, int r, int k)
{
    // If k is smaller than number of elements in array
    if (k > 0 && k <= r - l + 1)
    {
        // Partition the array around last element and get
        // position of pivot element in sorted array
        int pos = randomPartition(arr, l, r);
  
        // If position is same as k
        if (pos-l == k-1)
            return arr[pos];
        if (pos-l > k-1)  // If position is more, recur for left subarray
            return kthSmallest(arr, l, pos-1, k);
  
        // Else recur for right subarray
        return kthSmallest(arr, pos+1, r, k-pos+l-1);
    }
  
    // If k is more than number of elements in array
    return INT_MAX;
}
  
void swap(int *a, int *b)
{
    int temp = *a;
    *a = *b;
    *b = temp;
}
  
// Standard partition process of QuickSort().  It considers the last
// element as pivot and moves all smaller element to left of it
// and greater elements to right
int partition(int arr[], int l, int r)
{
    int x = arr[r], i = l;
    for (int j = l; j <= r - 1; j++)
    {
        if (arr[j] <= x)
        {
            swap(&arr[i], &arr[j]);
            i++;
        }
    }
    swap(&arr[i], &arr[r]);
    return i;
}
  
int randomPartition(int arr[], int l, int r)
{
    int n = r-l+1;
    int pivot = rand() % n;
    swap(&arr[l + pivot], &arr[r]);
    return partition(arr, l, r);
}
  
// Driver program to test above methods
int main()
{
    int arr[] = {12, 3, 5, 7, 4, 19, 26};
    int n = sizeof(arr)/sizeof(arr[0]), k = 3;
    cout << "K'th smallest element is " << kthSmallest(arr, 0, n-1, k);
    return 0;
}                  

/div>

Java

// Java program of above implementation
import java.util.Random;
  
public class GFG {
  
// This function returns k'th smallest element in arr[l..r] using
// QuickSort based method. ASSUMPTION: ALL ELEMENTS IN ARR[] ARE DISTINCT
    static int kthSmallest(int arr[], int l, int r, int k) {
        // If k is smaller than number of elements in array
        if (k > 0 && k <= r - l + 1) {
            // Partition the array around last element and get
            // position of pivot element in sorted array
            int pos = randomPartition(arr, l, r);
  
            // If position is same as k
            if (pos - l == k - 1) {
                return arr[pos];
            }
            if (pos - l > k - 1) // If position is more, recur for left subarray
            {
                return kthSmallest(arr, l, pos - 1, k);
            }
  
            // Else recur for right subarray
            return kthSmallest(arr, pos + 1, r, k - pos + l - 1);
        }
  
        // If k is more than number of elements in array
        return Integer.MAX_VALUE;
    }
  
    static void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
  
// Standard partition process of QuickSort(). It considers the last
// element as pivot and moves all smaller element to left of it
// and greater elements to right
    static int partition(int arr[], int l, int r) {
        int x = arr[r], i = l;
        for (int j = l; j <= r - 1; j++) {
            if (arr[j] <= x) {
                swap(arr, i, j);
                i++;
            }
        }
        swap(arr, i, r);
        return i;
    }
  
    static int randomPartition(int arr[], int l, int r) {
        int n = r - l + 1;
        int pivot = new Random().nextInt(1);
        swap(arr, l + pivot, r);
        return partition(arr, l, r);
    }
  
// Driver program to test above methods
    public static void main(String args[]) {
        int arr[] = {12, 3, 5, 7, 4, 19, 26};
        int n = arr.length, k = 3;
        System.out.println("K'th smallest element is " + kthSmallest(arr, 0, n - 1, k));
    }
}
  
/*This code is contributed by 29AjayKumar*/

C#

// C# program of above implementation
using System;
  
class GFG 
  
// This function returns k'th smallest 
// element in arr[l..r] using 
// QuickSort based method. ASSUMPTION: 
// ALL ELEMENTS IN ARR[] ARE DISTINCT 
static int kthSmallest(int []arr, int l,
                       int r, int k) 
    // If k is smaller than number 
    // of elements in array 
    if (k > 0 && k <= r - l + 1) 
    {
        // Partition the array around last 
        // element and get position of pivot
        // element in sorted array 
        int pos = randomPartition(arr, l, r); 
  
        // If position is same as k 
        if (pos - l == k - 1) 
        
            return arr[pos]; 
        
          
        // If position is more, recur 
        // for left subarray 
        if (pos - l > k - 1) 
        
            return kthSmallest(arr, l, pos - 1, k); 
        
  
        // Else recur for right subarray 
        return kthSmallest(arr, pos + 1, r,
                           k - pos + l - 1); 
    
  
    // If k is more than number of 
    // elements in array 
    return int.MaxValue; 
  
static void swap(int[] arr, int i, int j)
    int temp = arr[i]; 
    arr[i] = arr[j]; 
    arr[j] = temp; 
  
// Standard partition process of QuickSort(). 
// It considers the last element as pivot and 
// oves all smaller element to left of it 
// and greater elements to right 
static int partition(int []arr, int l, int r) 
    int x = arr[r], i = l; 
    for (int j = l; j <= r - 1; j++)
    
        if (arr[j] <= x) 
        
            swap(arr, i, j); 
            i++; 
        
    
    swap(arr, i, r); 
    return i; 
  
static int randomPartition(int []arr, int l, int r)
    int n = r - l + 1; 
    int pivot = new Random().Next(1); 
    swap(arr, l + pivot, r); 
    return partition(arr, l, r); 
  
// Driver Code
public static void Main()
    int []arr = {12, 3, 5, 7, 4, 19, 26}; 
    int n = arr.Length, k = 3; 
    Console.WriteLine("K'th smallest element is "
                    kthSmallest(arr, 0, n - 1, k)); 
  
// his code is contributed by 29AjayKumar


Output:

K'th smallest element is 5


References:

https://tutorialspoint.dev/slugresolver/kth-smallestlargest-element-unsorted-array/

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



This article is attributed to GeeksforGeeks.org

You Might Also Like

leave a comment

code

0 Comments

load comments

Subscribe to Our Newsletter