# Prime numbers and Fibonacci

Given a number, find the numbers (smaller than or equal to n) which are both Fibonacci and prime.

Examples:

```Input : n = 40
Output: 2 3 5 13
Explanation :
Here, range(upper limit) = 40
Fibonacci series upto n is, 1,
1, 2, 3, 5, 8, 13, 21, 34.
Prime numbers in above series = 2, 3, 5, 13.

Input : n = 100
Output: 2 3 5 13 89
Explanation :
Here, range(upper limit) = 40
Fibonacci series upto n are 1, 1, 2,
3, 5, 8, 13, 21, 34, 55, 89.
Prime numbers in Fibonacci upto n : 2, 3,
5, 13, 89.
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

A simple solution is to iterate generate all fibonacci numbers smaller than or equal to n. For every Fibonacci number, check if it is prime or not. If prime, then print it.

An efficient solution is to use Sieve to generate all Prime numbers up to n. After we have generated prime numbers, we can quickly check if a prime is Fibonacci or not by using the property that a number is Fibonacci if it is of the form 5i2 + 4 or in the form 5i2 – 4. Refer this for details.

Below is the implementation of above steps

## C++

 `// CPP program to print prime numbers present ` `// in Fibonacci series. ` `#include ` `using` `namespace` `std; ` ` `  `// Function to check perfect square ` `bool` `isSquare(``int` `n) ` `{ ` `    ``int` `sr = ``sqrt``(n); ` `    ``return` `(sr * sr == n); ` `} ` ` `  `// Prints all numbers less than or equal to n that ` `// are both Prime and Fibonacci. ` `void` `printPrimeAndFib(``int` `n) ` `{ ` `    ``// Using Sieve to generate all primes ` `    ``// less than or equal to n. ` `    ``bool` `prime[n + 1];     ` `    ``memset``(prime, ``true``, ``sizeof``(prime)); ` `    ``for` `(``int` `p = 2; p * p <= n; p++) { ` ` `  `        ``// If prime[p] is not changed, then ` `        ``// it is a prime ` `        ``if` `(prime[p] == ``true``) { ` ` `  `            ``// Update all multiples of p ` `            ``for` `(``int` `i = p * 2; i <= n; i += p) ` `                ``prime[i] = ``false``; ` `        ``} ` `    ``} ` ` `  `    ``// Now traverse through the range and print numbers ` `    ``// that are both prime and Fibonacci. ` `    ``for` `(``int` `i=2; i<=n; i++)     ` `       ``if` `(prime[i] && (isSquare(5 * i * i + 4) > 0 ||  ` `                        ``isSquare(5 * i * i - 4) > 0)) ` `                ``cout << i << ``" "``; ` `} ` ` `  `// Driver function ` `int` `main() ` `{ ` `    ``int` `n = 30; ` `    ``printPrimeAndFib(n); ` `    ``return` `0; ` `} `

## Java

 `// Java program to print prime numbers  ` `// present in Fibonacci series. ` `class` `PrimeAndFib  ` `{ ` `// Function to check perfect square ` `Boolean isSquare(``int` `n) ` `{ ` `    ``int` `sr = (``int``)Math.sqrt(n); ` `    ``return` `(sr * sr == n); ` `} ` ` `  `// Prints all numbers less than or equal ` `// to n that are both Prime and Fibonacci. ` `static` `void` `printPrimeAndFib(``int` `n) ` `{ ` `    ``// Using Sieve to generate all  ` `    ``// primes less than or equal to n. ` `    ``Boolean[] prime = ``new` `Boolean[n + ``1``];  ` `     `  `    ``// memset(prime, true, sizeof(prime)); ` `    ``for` `(``int` `p = ``0``; p <= n; p++)  ` `    ``prime[p] = ``true``; ` `    ``for` `(``int` `p = ``2``; p * p <= n; p++) { ` ` `  `        ``// If prime[p] is not changed, ` `        ``// then it is a prime ` `        ``if` `(prime[p] == ``true``) { ` ` `  `            ``// Update all multiples of p ` `            ``for` `(``int` `i = p * ``2``; i <= n; i += p) ` `                ``prime[i] = ``false``; ` `        ``} ` `    ``} ` ` `  `    ``// Now traverse through the range and  ` `    ``// print numbers that are both prime  ` `    ``// and Fibonacci. ` `    ``for` `(``int` `i=``2``; i<=n; i++) {  ` `        ``double` `sqrt = Math.sqrt(``5` `* i * i + ``4``); ` `        ``double` `sqrt1 = Math.sqrt(``5` `* i * i - ``4``); ` `     `  `        ``int` `x = (``int``) sqrt; ` `        ``int` `y = (``int``) sqrt1; ` ` `  `    ``if` `(prime[i]==``true` `&& (Math.pow(sqrt,``2``) ==  ` `        ``Math.pow(x,``2``) || Math.pow(sqrt1,``2``) ==  ` `        ``Math.pow(y,``2``))) ` `        ``System.out.print(i+``" "``); ` `    ``} ` `} ` ` `  `// driver program ` `public` `static` `void` `main(String s[]) ` `{ ` `    ``int` `n = ``30``; ` `    ``printPrimeAndFib(n); ` `} ` `} ` ` `  `// This code is contributed by Prerna Saini `

## Python 3

 `# Python 3 program to print  ` `# prime numbers present in  ` `# Fibonacci series. ` `import` `math ` ` `  `# Function to check perfect square ` `def` `isSquare(n) : ` `    ``sr ``=` `(``int``)(math.sqrt(n)) ` `    ``return` `(sr ``*` `sr ``=``=` `n) ` ` `  ` `  `# Prints all numbers less than ` `# or equal to n that  are ` `# both Prime and Fibonacci. ` `def` `printPrimeAndFib(n) : ` `     `  `    ``# Using Sieve to generate all  ` `    ``# primes less than or equal to n. ` `    ``prime ``=``[``True``] ``*` `(n ``+` `1``)  ` `    ``p ``=` `2` `    ``while``(p ``*` `p <``=` `n ): ` `         `  `        ``# If prime[p] is not changed, ` `        ``# then it is a prime ` `        ``if` `(prime[p] ``=``=` `True``) : ` `             `  `            ``# Update all multiples of p ` `            ``for` `i ``in` `range``(p ``*` `2``, n ``+` `1``, p) : ` `                ``prime[i] ``=` `False` `                 `  `        ``p ``=` `p ``+` `1` `     `  `    ``# Now traverse through the range  ` `    ``# and print numbers that are  ` `    ``# both prime and Fibonacci. ` `    ``for` `i ``in` `range``(``2``, n ``+` `1``) : ` `        ``if` `(prime[i] ``and` `(isSquare(``5` `*` `i ``*` `i ``+` `4``) > ``0` `or` `             ``isSquare(``5` `*` `i ``*` `i ``-` `4``) > ``0``)) : ` `            ``print``(i , ``" "``,end``=``"") ` ` `  ` `  `# Driver function ` `n ``=` `30` `printPrimeAndFib(n); ` ` `  ` `  `# This code is contributed  ` `# by Nikita Tiwari. `

## C#

 `// C# program to print prime numbers  ` `// present in Fibonacci series. ` `using` `System; ` ` `  `class` `GFG { ` `     `  `    ``// Function to check perfect square ` `    ``static` `bool` `isSquare(``int` `n) ` `    ``{ ` `        ``int` `sr = (``int``)Math.Sqrt(n); ` `         `  `        ``return` `(sr * sr == n); ` `    ``} ` `      `  `    ``// Prints all numbers less than or equal ` `    ``// to n that are both Prime and Fibonacci. ` `    ``static` `void` `printPrimeAndFib(``int` `n) ` `    ``{ ` `         `  `        ``// Using Sieve to generate all  ` `        ``// primes less than or equal to n. ` `        ``bool``[] prime = ``new` `bool``[n + 1];  ` `          `  `        ``// memset(prime, true, sizeof(prime)); ` `        ``for` `(``int` `p = 0; p <= n; p++)  ` `            ``prime[p] = ``true``; ` `             `  `        ``for` `(``int` `p = 2; p * p <= n; p++) { ` `      `  `            ``// If prime[p] is not changed, ` `            ``// then it is a prime ` `            ``if` `(prime[p] == ``true``) { ` `      `  `                ``// Update all multiples of p ` `                ``for` `(``int` `i = p * 2; i <= n; i += p) ` `                    ``prime[i] = ``false``; ` `            ``} ` `        ``} ` `      `  `        ``// Now traverse through the range and  ` `        ``// print numbers that are both prime  ` `        ``// and Fibonacci. ` `        ``for` `(``int` `i = 2; i <= n; i++) { ` `             `  `            ``double` `sqrt = Math.Sqrt(5 * i * i + 4); ` `            ``double` `sqrt1 = Math.Sqrt(5 * i * i - 4); ` `          `  `            ``int` `x = (``int``) sqrt; ` `            ``int` `y = (``int``) sqrt1; ` `      `  `        ``if` `(prime[i] == ``true` `&& (Math.Pow(sqrt, 2) ==  ` `             ``Math.Pow(x, 2) || Math.Pow(sqrt1, 2) ==  ` `                                    ``Math.Pow(y, 2))) ` `            ``Console.Write(i + ``" "``); ` `        ``} ` `    ``} ` `      `  `    ``// driver program ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``int` `n = 30; ` `         `  `        ``printPrimeAndFib(n); ` `    ``} ` `} ` `  `  `// This code is contributed by Anant Agarwal. `

## PHP

0 ||
isSquare(5 * \$i * \$i – 4) > 0))
echo \$i . ” “;
}

// Driver Code
\$n = 30;
printPrimeAndFib(\$n);

// This code is contributed by mits
?>

Output:

```2 3 5 13
```