Tutorialspoint.dev

N’th palindrome of K digits

Given two integers n and k, Find the lexicographical nth palindrome of k digits.

Examples:

Input  : n = 5, k = 4
Output : 1441
Explanation:
4 digit lexicographical palindromes are:
1001, 1111, 1221, 1331, 1441
5th palindrome = 1441

Input  :  n = 4, k = 6
Output : 103301


Naive Approach

A brute force is to run a loop from smallest kth digit number and check for every number whether it is palindrome or not. If it is palindrome number then decrements the value of k. Therefore the loop runs until k become exhausted.

C++

// A naive approach of C++ program of finding nth
// palindrome of k digit
#include<bits/stdc++.h>
using namespace std;
  
// Utility function to reverse the number n
int reverseNum(int n)
{
    int rem, rev=0;
    while (n)
    {
        rem = n % 10;
        rev = rev * 10 + rem;
        n /= 10;
    }
    return rev;
}
  
// Boolean Function to check for palindromic
// number
bool isPalindrom(int num)
{
    return num == reverseNum(num);
}
  
// Function for finding nth palindrome of k digits
int nthPalindrome(int n,int k)
{
    // Get the smallest k digit number
    int num = (int)pow(10, k-1);
  
    while (true)
    {
        // check the number is palindrom or not
        if (isPalindrom(num))
            --n;
  
        // if n'th palindrome found break the loop
        if (!n)
            break;
  
        // Increment number for checking next palindrome
        ++num;
    }
  
    return num;
}
  
// Driver code
int main()
{
    int n = 6, k = 5;
    printf("%dth palindrome of %d digit = %d ",
           n, k, nthPalindrome(n, k));
  
    n = 10, k = 6;
    printf("%dth palindrome of %d digit = %d",
           n, k, nthPalindrome(n, k));
    return 0;
}

Java

// A naive approach of Java program of finding nth
// palindrome of k digit
import java.util.*;
  
class GFG
{
// Utility function to reverse the number n
static int reverseNum(int n)
{
    int rem, rev = 0;
    while (n > 0)
    {
        rem = n % 10;
        rev = rev * 10 + rem;
        n /= 10;
    }
    return rev;
}
  
// Boolean Function to check for palindromic
// number
static boolean isPalindrom(int num)
{
    return num == reverseNum(num);
}
  
// Function for finding nth palindrome of k digits
static int nthPalindrome(int n, int k)
{
    // Get the smallest k digit number
    int num = (int)Math.pow(10, k-1);
  
    while (true)
    {
        // check the number is palindrom or not
        if (isPalindrom(num))
            --n;
  
        // if n'th palindrome found break the loop
        if (n == 0)
            break;
  
        // Increment number for checking next palindrome
        ++num;
    }
  
    return num;
}
  
// Driver code
public static void main(String[] args)
{
    int n = 6, k = 5;
    System.out.println(n + "th palindrome of " + k + " digit = " + nthPalindrome(n, k));
  
    n = 10; k = 6;
    System.out.println(n + "th palindrome of " + k + " digit = " + nthPalindrome(n, k));
}
}
  
// This code is contributed by mits

/div>

Python3

# A naive approach of Python3 program 
# of finding nth palindrome of k digit 
import math;
# Utility function to 
# reverse the number n 
def reverseNum(n): 
    rev = 0
    while (n): 
        rem = n % 10
        rev = (rev * 10) + rem; 
        n = int(n / 10); 
   
    return rev; 
  
# Boolean Function to check for 
# palindromic number 
def isPalindrom(num):
    return num == reverseNum(num); 
  
# Function for finding nth 
# palindrome of k digits 
def nthPalindrome(n, k): 
    # Get the smallest k digit number 
    num = math.pow(10, k - 1); 
  
    while (True): 
        # check the number is 
        # palindrom or not 
        if (isPalindrom(num)): 
            n-=1
  
        # if n'th palindrome found 
        # break the loop 
        if (not n): 
            break
  
        # Increment number for checking
        # next palindrome 
        num+=1
  
    return int(num); 
  
# Driver code 
n = 6;
k = 5
print(n,"th palindrome of",k,"digit =",nthPalindrome(n, k)); 
  
n = 10;
k = 6
print(n,"th palindrome of",k,"digit =",nthPalindrome(n, k));
  
# This code is contributed by mits

C#

// A naive approach of C# program of finding nth
// palindrome of k digit
using System;
  
class GFG
{
// Utility function to reverse the number n
static int reverseNum(int n)
{
    int rem, rev = 0;
    while (n > 0)
    {
        rem = n % 10;
        rev = rev * 10 + rem;
        n /= 10;
    }
    return rev;
}
  
// Boolean Function to check for palindromic
// number
static bool isPalindrom(int num)
{
    return num == reverseNum(num);
}
  
// Function for finding nth palindrome of k digits
static int nthPalindrome(int n, int k)
{
    // Get the smallest k digit number
    int num = (int)Math.Pow(10, k-1);
  
    while (true)
    {
        // check the number is palindrom or not
        if (isPalindrom(num))
            --n;
  
        // if n'th palindrome found break the loop
        if (n == 0)
            break;
  
        // Increment number for checking next palindrome
        ++num;
    }
  
    return num;
}
  
// Driver code
public static void Main()
{
    int n = 6, k = 5;
    Console.WriteLine(n + "th palindrome of " + k + " digit = " + nthPalindrome(n, k));
  
    n = 10; k = 6;
    Console.WriteLine(n + "th palindrome of " + k + " digit = " + nthPalindrome(n, k));
}
}
  
// This code is contributed 
// by Akanksha Rai

PHP

<?php
// A naive approach of PHP program 
// of finding nth palindrome of k digit 
  
// Utility function to 
// reverse the number n 
function reverseNum($n
    $rem;
    $rev = 0; 
    while ($n
    
        $rem = $n % 10; 
        $rev = ($rev * 10) + $rem
        $n = (int)($n / 10); 
    
    return $rev
  
// Boolean Function to check for 
// palindromic number 
function isPalindrom($num
    return $num == reverseNum($num); 
  
// Function for finding nth 
// palindrome of k digits 
function nthPalindrome($n, $k
    // Get the smallest k digit number 
    $num = pow(10, $k - 1); 
  
    while (true) 
    
        // check the number is 
        // palindrom or not 
        if (isPalindrom($num)) 
            --$n
  
        // if n'th palindrome found 
        // break the loop 
        if (!$n
            break
  
        // Increment number for checking
        // next palindrome 
        ++$num
    
  
    return $num
  
// Driver code 
$n = 6;
$k = 5; 
echo $n, "th palindrome of ", $k, " digit = "
                  nthPalindrome($n, $k), " "
  
$n = 10;
$k = 6; 
echo $n,"th palindrome of ", $k, " digit = "
                 nthPalindrome($n, $k), " ";
  
// This code is contributed by ajit
?>


Output:

6th palindrome of 5 digit = 10501
10th palindrome of 6 digit = 109901

Time complexity: O(10k)
Auxiliary space: O(1)

Efficient approach

An efficient method is to look for a pattern. According to the property of palindrome first half digits is same as the rest half digits in reverse order. Therefore we only need to look for first half digits as rest of them can easily be generated. Let’s take k = 8, smallest palindrome always starts from 1 as leading digit and goes like that for first 4 digit of number.

First half values for k = 8
1st: 1000
2nd: 1001
3rd: 1002
...
...
100th: 1099

So we can easily write the above sequence for nth
palindrome as: (n-1) + 1000
For k digit number, we can generalize above formula as:

If k is odd
=> num = (n-1) + 10k/2
else 
=> num = (n-1) + 10k/2 - 1 

Now rest half digits can be expanded by just 
printing the value of num in reverse order. 
But before this if k is odd then we have to truncate 
the last digit of a value num 

Illustration:
n = 6 k = 5

  1. Determine the number of first half digits = floor(5/2) = 2
  2. Use formula: num = (6-1) + 102 = 105
  3. Expand the rest half digits by reversing the value of num.
    Final answer will be 10501

Below is the implementation of above steps

C++

// C++ program of finding nth palindrome
// of k digit
#include<bits/stdc++.h>
using namespace std;
  
void nthPalindrome(int n, int k)
{
    // Determine the first half digits
    int temp = (k & 1) ? (k / 2) : (k/2 - 1);
    int palindrome = (int)pow(10, temp);
    palindrome += n - 1;
  
    // Print the first half digits of palindrome
    printf("%d", palindrome);
  
    // If k is odd, truncate the last digit
    if (k & 1)
        palindrome /= 10;
  
    // print the last half digits of palindrome
    while (palindrome)
    {
        printf("%d", palindrome % 10);
        palindrome /= 10;
    }
    printf(" ");
}
  
// Driver code
int main()
{
    int n = 6, k = 5;
    printf("%dth palindrome of %d digit = ",n ,k);
    nthPalindrome(n ,k);
  
    n = 10, k = 6;
    printf("%dth palindrome of %d digit = ",n ,k);
    nthPalindrome(n, k);
    return 0;
}

Java

// Java program of finding nth palindrome
// of k digit
  
  
class GFG{
static void nthPalindrome(int n, int k)
{
    // Determine the first half digits
    int temp = (k & 1)!=0 ? (k / 2) : (k/2 - 1);
    int palindrome = (int)Math.pow(10, temp);
    palindrome += n - 1;
  
    // Print the first half digits of palindrome
    System.out.print(palindrome);
  
    // If k is odd, truncate the last digit
    if ((k & 1)>0)
        palindrome /= 10;
  
    // print the last half digits of palindrome
    while (palindrome>0)
    {
        System.out.print(palindrome % 10);
        palindrome /= 10;
    }
    System.out.println("");
}
  
// Driver code
public static void main(String[] args)
{
    int n = 6, k = 5;
    System.out.print(n+"th palindrome of "+k+" digit = ");
    nthPalindrome(n ,k);
  
    n = 10;
    k = 6;
    System.out.print(n+"th palindrome of "+k+" digit = ");
    nthPalindrome(n, k);
  
}
}
// This code is contributed by mits

Python3

# Python3 program of finding nth palindrome
# of k digit
  
def nthPalindrome(n, k):
  
    # Determine the first half digits
    if(k & 1):
        temp = k // 2
    else:
        temp = k // 2 - 1
  
    palindrome = 10**temp
    palindrome = palindrome + n - 1
  
    # Print the first half digits of palindrome
    print(palindrome, end="")
  
    # If k is odd, truncate the last digit
    if(k & 1):
        palindrome = palindrome // 10
  
    # print the last half digits of palindrome
    while(palindrome):
        print(palindrome % 10, end="")
        palindrome = palindrome // 10
  
# Driver code
if __name__=='__main__':
    n = 6
    k = 5
    print(n, "th palindrome of", k, " digit = ", end=" ")
    nthPalindrome(n, k)
    print()
    n = 10
    k = 6
    print(n, "th palindrome of", k, "digit = ",end=" ")
    nthPalindrome(n, k)
  
# This code is contributed by
# Sanjit_Prasad

C#

// C# program of finding nth palindrome 
// of k digit 
using System;
  
class GFG
{
static void nthPalindrome(int n, int k) 
    // Determine the first half digits 
    int temp = (k & 1) != 0 ? (k / 2) : (k / 2 - 1); 
    int palindrome = (int)Math.Pow(10, temp); 
    palindrome += n - 1; 
  
    // Print the first half digits 
    // of palindrome 
    Console.Write(palindrome); 
  
    // If k is odd, truncate the last digit 
    if ((k & 1) > 0) 
        palindrome /= 10; 
  
    // print the last half digits 
    // of palindrome 
    while (palindrome>0) 
    
        Console.Write(palindrome % 10); 
        palindrome /= 10; 
    
    Console.WriteLine(""); 
  
// Driver code 
static public void Main ()
{
    int n = 6, k = 5; 
    Console.Write(n+"th palindrome of " + k + 
                                " digit = "); 
    nthPalindrome(n, k); 
      
    n = 10; 
    k = 6; 
    Console.Write(n+"th palindrome of " + k + 
                                " digit = "); 
    nthPalindrome(n, k); 
  
// This code is contributed by ajit

PHP

0)
{
print($palindrome % 10);
$palindrome = (int)($palindrome / 10);
}
print(“ ”);
}

// Driver code
$n = 6;
$k = 5;
print($n.”th palindrome of $k digit = “);
nthPalindrome($n, $k);

$n = 10;
$k = 6;
print($n.”th palindrome of $k digit = “);
nthPalindrome($n, $k);

// This code is contributed by mits
?>


Output:

6th palindrome of 5 digit = 10501
10th palindrome of 6 digit = 109901

Time complexity: O(k)
Auxiliary space: O(1)

Reference:
http://stackoverflow.com/questions/11925840/how-to-calculate-nth-n-digit-palindrome-efficiently

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



This article is attributed to GeeksforGeeks.org

You Might Also Like

leave a comment

code

0 Comments

load comments

Subscribe to Our Newsletter