Tutorialspoint.dev

Maximum binomial coefficient term value

Given a positive integer n. The task is to find the maximum coefficient term in all binomial coefficient.
The binomial coefficient series is
nC0, nC1, nC2, …., nCr, …., nCn-2, nCn-1, nCn
the task is to find maximum value of nCr.

Examples:

Input : n = 4
Output : 6
4C0 = 1
4C1 = 4
4C2 = 6
4C3 = 1
4C4 = 1
So, maximum coefficient value is 6.

Input : n = 3
Output : 3



Method 1: (Brute Force)
The idea is to find all the value of binomial coefficient series and find the maximum value in the series.

Below is the implementation of this approach:

C++

// CPP Program to find maximum binomial coefficient
// term
#include<bits/stdc++.h>
using namespace std;
  
// Return maximum binomial coefficient term value.
int maxcoefficientvalue(int n)
{
    int C[n+1][n+1];
   
    // Calculate value of Binomial Coefficient in 
    // bottom up manner
    for (int i = 0; i <= n; i++)
    {
        for (int j = 0; j <= min(i, n); j++)
        {
            // Base Cases
            if (j == 0 || j == i)
                C[i][j] = 1;
   
            // Calculate value using previously
            // stored values
            else
                C[i][j] = C[i-1][j-1] + C[i-1][j];
        }
    }
          
    // finding the maximum value.
    int maxvalue = 0;
    for (int i = 0; i <= n; i++)
        maxvalue = max(maxvalue, C[n][i]);
          
    return maxvalue;
}
  
// Driven Program
int main()
{
    int n = 4;
    cout << maxcoefficientvalue(n) << endl;
    return 0;

Java

// Java Program to find
// maximum binomial 
// coefficient term
import java.io.*;
  
class GFG 
{
// Return maximum binomial 
// coefficient term value.
static int maxcoefficientvalue(int n)
{
    int [][]C = new int[n + 1][n + 1];
  
    // Calculate value of 
    // Binomial Coefficient  
    // in bottom up manner
    for (int i = 0; i <= n; i++)
    {
        for (int j = 0
                 j <= Math.min(i, n); j++)
        {
              
            // Base Cases
            if (j == 0 || j == i)
                C[i][j] = 1;
  
            // Calculate value
            // using previously
            // stored values
            else
                C[i][j] = C[i - 1][j - 1] + 
                          C[i - 1][j];
        }
    }
          
    // finding the
    // maximum value.
    int maxvalue = 0;
      
    for (int i = 0; i <= n; i++)
        maxvalue = Math.max(maxvalue, C[n][i]);
          
    return maxvalue;
}
  
// Driver Code
public static void main (String[] args) 
{
    int n = 4;
    System.out.println(maxcoefficientvalue(n));
}
}
  
// This code is contributed by ajit

Python3

# Python3 Program to find 
# maximum binomial 
# coefficient term
  
# Return maximum binomial 
# coefficient term value.
def maxcoefficientvalue(n):
    C = [[0 for x in range(n + 1)]
            for y in range(n + 1)];
              
    # Calculate value of
    # Binomial Coefficient in
    # bottom up manner
    for i in range(n + 1):
        for j in range(min(i, n) + 1):
              
            # Base Cases
            if (j == 0 or j == i):
                C[i][j] = 1;
                  
            # Calculate value
            # using previously
            # stored values
            else:
                C[i][j] = (C[i - 1][j - 1] + 
                           C[i - 1][j]);
      
    # finding the maximum value.
    maxvalue = 0;
    for i in range(n + 1):
        maxvalue = max(maxvalue, C[n][i]);
      
    return maxvalue;
  
# Driver Code
n = 4;
print(maxcoefficientvalue(n));
  
# This code is contributed by mits

C#

// C# Program to find maximum binomial coefficient
// term
using System;
  
public class GFG {
          
    // Return maximum binomial coefficient term value.
    static int maxcoefficientvalue(int n)
    {
        int [,]C = new int[n+1,n+1];
      
        // Calculate value of Binomial Coefficient in 
        // bottom up manner
        for (int i = 0; i <= n; i++)
        {
            for (int j = 0; j <= Math.Min(i, n); j++)
            {
                  
                // Base Cases
                if (j == 0 || j == i)
                    C[i,j] = 1;
      
                // Calculate value using previously
                // stored values
                else
                    C[i,j] = C[i-1,j-1] + C[i-1,j];
            }
        }
              
        // finding the maximum value.
        int maxvalue = 0;
          
        for (int i = 0; i <= n; i++)
            maxvalue = Math.Max(maxvalue, C[n,i]);
              
        return maxvalue;
    }
      
    // Driven Program
  
    static public void Main ()
    {
          
        int n = 4;
          
        Console.WriteLine(maxcoefficientvalue(n));
    }
}
  
// This code is contributed by vt_m.

PHP

<?php
// PHP Program to find 
// maximum binomial 
// coefficient term
  
// Return maximum binomial 
// coefficient term value.
function maxcoefficientvalue($n)
{
  
    // Calculate value of 
    // Binomial Coefficient in 
    // bottom up manner
    for ($i = 0; $i <= $n; $i++)
    {
        for ($j = 0; $j <= min($i, $n); $j++)
        {
              
            // Base Cases
            if ($j == 0 || $j == $i)
                $C[$i][$j] = 1;
  
            // Calculate value
            // using previously
            // stored values
            else
                $C[$i][$j] = $C[$i - 1][$j - 1] + 
                             $C[$i - 1][$j];
        }
    }
          
    // finding the maximum value.
    $maxvalue = 0;
    for ($i = 0; $i <= $n; $i++)
        $maxvalue = max($maxvalue, $C[$n][$i]);
          
    return $maxvalue;
}
  
    // Driver Code
    $n = 4;
    echo maxcoefficientvalue($n), " ";
  
// This code is contributed by aj_36
?>


Output:

6

Method 2: (Using formula)

Proof,

Expansion of (x + y)n are:
nC0 xn y0, nC1 xn-1 y1, nC2 xn-2 y2, …., nCr xn-r yr, …., nCn-2 x2 yn-2, nCn-1 x1 yn-1, nCn x0 yn

So, putting x = 1 and y = 1, we get binomial coefficient,
nC0, nC1, nC2, …., nCr, …., nCn-2, nCn-1, nCn

Let term ti+1 contains the greatest value in (x + y)n. Therefore,
tr+1 >= tr
nCr xn-r yr >= nCr-1 xn-r+1 yr-1

Putting x = 1 and y = 1,
nCr >= nCr-1
nCr/nCr-1 >= 1
(using nCr/nCr-1 = (n-r+1)/r)
(n-r+1)/r >= 1
(n+1)/r – 1 >= 1
(n+1)/r >= 2
(n+1)/2 >= r

Therefore, r should be less than equal to (n+1)/2.
And r should be integer. So, we get maximum coefficient for r equals to:
(1) n/2, when n is even.
(2) (n+1)/2 or (n-1)/2, when n is odd.

C++

// CPP Program to find maximum binomial coefficient term
#include<bits/stdc++.h>
using namespace std;
  
// Returns value of Binomial Coefficient C(n, k)
int binomialCoeff(int n, int k)
{
    int C[n+1][k+1];
   
    // Calculate value of Binomial Coefficient 
    // in bottom up manner
    for (int i = 0; i <= n; i++)
    {
        for (int j = 0; j <= min(i, k); j++)
        {
            // Base Cases
            if (j == 0 || j == i)
                C[i][j] = 1;
   
            // Calculate value using previously
            // stored values
            else
                C[i][j] = C[i-1][j-1] + C[i-1][j];
        }
    }
   
    return C[n][k];
}
  
// Return maximum binomial coefficient term value.
int maxcoefficientvalue(int n)
{
    // if n is even
    if (n%2 == 0)
        return binomialCoeff(n, n/2);
          
    // if n is odd
    else
        return binomialCoeff(n, (n+1)/2);
}
  
// Driven Program
int main()
{
    int n = 4;
    cout << maxcoefficientvalue(n) << endl;
    return 0;

Java

// Java Program to find 
// maximum binomial 
// coefficient term
import java.io.*;
  
class GFG 
{
              
    // Returns value of 
    // Binomial Coefficient
    // C(n, k)
    static int binomialCoeff(int n, 
                             int k)
    {
        int [][]C = new int[n + 1][k + 1];
      
        // Calculate value of 
        // Binomial Coefficient 
        // in bottom up manner
        for (int i = 0; i <= n; i++)
        {
            for (int j = 0
                j <= Math.min(i, k); j++)
            {
                  
                // Base Cases
                if (j == 0 || j == i)
                    C[i][j] = 1;
      
                // Calculate value using 
                // previously stored values
                else
                    C[i][j] = C[i - 1][j - 1] + 
                              C[i - 1][j];
            }
        }
        return C[n][k];
    }
      
    // Return maximum 
    // binomial coefficient
    // term value.
    static int maxcoefficientvalue(int n)
    {
          
        // if n is even
        if (n % 2 == 0)
            return binomialCoeff(n, n / 2);
              
        // if n is odd
        else
            return binomialCoeff(n, (n + 1) / 2);
    }
      
    // Driver Code
    public static void main(String[] args) 
    {
        int n = 4;
      
        System.out.println(maxcoefficientvalue(n));
    }
}
  
// This code is contributed
// by akt_mit

Python3

# Python3 Program to find
# maximum binomial
# coefficient term
# Returns value of 
# Binomial Coefficient C(n, k)
def binomialCoeff(n, k):
  
    C=[[0 for x in range(k+1)] for y in range(n+1)] 
  
    # Calculate value of
    # Binomial Coefficient 
    # in bottom up manner
    for i in range(n+1):
        for j in range(min(i,k)+1):
            # Base Cases
            if (j == 0 or j == i):
                C[i][j] = 1;
  
            # Calculate value
            # using previously
            # stored values
            else:
                C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
  
    return C[n][k];
  
  
# Return maximum binomial
# coefficient term value.
def maxcoefficientvalue(n):
    # if n is even
    if (n % 2 == 0):
        return binomialCoeff(n, int(n / 2));
          
    # if n is odd
    else:
        return binomialCoeff(n, int((n + 1) / 2));
  
# Driver Code
if __name__=='__main__':
    n = 4;
    print(maxcoefficientvalue(n));
  
# This code is contributed by mits

C#

// C# Program to find maximum binomial 
// coefficient term
using System;
  
public class GFG {
          
    // Returns value of Binomial Coefficient
    // C(n, k)
    static int binomialCoeff(int n, int k)
    {
        int [,]C = new int[n+1,k+1];
      
        // Calculate value of Binomial 
        // Coefficient in bottom up manner
        for (int i = 0; i <= n; i++)
        {
            for (int j = 0; 
                  j <= Math.Min(i, k); j++)
            {
                  
                // Base Cases
                if (j == 0 || j == i)
                    C[i,j] = 1;
      
                // Calculate value using 
                // previously stored values
                else
                    C[i,j] = C[i-1,j-1] + 
                                   C[i-1,j];
            }
        }
      
        return C[n,k];
    }
      
    // Return maximum binomial coefficient
    // term value.
    static int maxcoefficientvalue(int n)
    {
          
        // if n is even
        if (n % 2 == 0)
            return binomialCoeff(n, n/2);
              
        // if n is odd
        else
            return binomialCoeff(n, (n + 1) / 2);
    }
      
    // Driven Program
    static public void Main ()
    {
          
        int n = 4;
          
        Console.WriteLine(maxcoefficientvalue(n));
    }
}
  
// This code is contributed by vt_m.

PHP

<?php
// PHP Program to find
// maximum binomial
// coefficient term
// Returns value of 
// Binomial Coefficient C(n, k)
function binomialCoeff($n, $k)
{
    $C[$n + 1][$k + 1] = array(0);
  
    // Calculate value of
    // Binomial Coefficient 
    // in bottom up manner
    for ($i = 0; $i <= $n; $i++)
    {
        for ($j = 0;
             $j <= min($i, $k); $j++)
        {
            // Base Cases
            if ($j == 0 || $j == $i)
                $C[$i][$j] = 1;
  
            // Calculate value
            // using previously
            // stored values
            else
                $C[$i][$j] = $C[$i - 1][$j - 1] + 
                             $C[$i - 1][$j];
        }
    }
  
    return $C[$n][$k];
}
  
// Return maximum binomial
// coefficient term value.
function maxcoefficientvalue($n)
{
    // if n is even
    if ($n % 2 == 0)
        return binomialCoeff($n, $n / 2);
          
    // if n is odd
    else
        return binomialCoeff($n
                            ($n + 1) / 2);
}
  
// Driver Code
$n = 4;
echo maxcoefficientvalue($n), " ";
  
// This code is contributed by m_kit
?>


Output:

6


This article is attributed to GeeksforGeeks.org

leave a comment

code

0 Comments

load comments

Subscribe to Our Newsletter