# Given a large number, check if a subsequence of digits is divisible by 8

Given a number of at most 100 digits. We have to check if it is possible, after removing certain digits, to obtain a number of at least one digit which is divisible by 8. We are forbidden to rearrange the digits.

Examples :

```Input : 1787075866
Output : Yes
There exist more one or more subsequences
divisible by 8. Example subsequences are
176, 16 and 8.

Input : 6673177113
Output : No
No subsequence is divisible by 8.

Input : 3144
Output : Yes
The subsequence 344 is divisible by 8.
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Property of the divisibility by eight : number can be divided by eight if and only if its last three digits form a number that can be divided by eight. Thus, it is enough to test only numbers that can be obtained from the original one by crossing out and that contain at most three digits i.e we check all one digits, two digits and three digit number combinations.

Method 1 (Brute Force):

We apply the brute force approach. We permute all possible single digit, double digit and triple digit combinations using iterative ladder. If we encounter a single digit number divisible by 8 or a double digit number combination divisible by 8 or a triple digit number combination divisible by 8, then that will be the solution to our problem.

## C++

 `// CPP program to check if a subsequence of digits ` `// is divisible by 8. ` `#include ` `using` `namespace` `std; ` ` `  `// Function to calculate any permutation divisible ` `// by 8. If such permutation exists, the function ` `// will return that permutation else it will return -1 ` `bool` `isSubSeqDivisible(string str) ` `{ ` `    ``// Generating all possible permutations and checking ` `    ``// if any such permutation is divisible by 8 ` `    ``for` `(``int` `i = 0; i < l; i++) { ` `        ``for` `(``int` `j = i; j < l; j++) { ` `            ``for` `(``int` `k = j; k < l; k++) { ` `                ``if` `(arr[i] % 8 == 0) ` `                    ``return` `true``; ` ` `  `                ``else` `if` `((arr[i] * 10 + arr[j]) % 8 == 0 && i != j) ` `                    ``return` `true``; ` ` `  `                ``else` `if` `((arr[i] * 100 + arr[j] * 10 + arr[k]) % 8 == 0 && i != j && j != k && i != k) ` `                    ``return` `true``; ` `            ``} ` `        ``} ` `    ``} ` `    ``return` `false``; ` `} ` ` `  `// Driver function ` `int` `main() ` `{ ` `    ``string str = ``"3144"``; ` `    ``if` `(isSubSeqDivisible(str)) ` `        ``cout << ``"Yes"``; ` `    ``else` `        ``cout << ``"No"``; ` `    ``return` `0; ` `} `

## Java

 `// Java program to check if a subsequence ` `// of digits is divisible by 8. ` `import` `java.io.*; ` ` `  `class` `GFG { ` ` `  `    ``// Function to calculate any permutation ` `    ``// divisible by 8. If such permutation ` `    ``// exists, the function will return ` `    ``// that permutation else it will return -1 ` `    ``static` `boolean` `isSubSeqDivisible(String str) ` `    ``{ ` ` `  `        ``int` `i, j, k, l = str.length(); ` `        ``int` `arr[] = ``new` `int``[l]; ` ` `  `        ``// Generating all possible permutations ` `        ``// and checking if any such ` `        ``// permutation is divisible by 8 ` `        ``for` `(i = ``0``; i < l; i++) { ` `            ``for` `(j = i; j < l; j++) { ` `                ``for` `(k = j; k < l; k++) { ` `                    ``if` `(arr[i] % ``8` `== ``0``) ` `                        ``return` `true``; ` ` `  `                    ``else` `if` `((arr[i] * ``10` `+ arr[j]) % ``8` `== ``0` `&& i != j) ` `                        ``return` `true``; ` ` `  `                    ``else` `if` `((arr[i] * ``100` `+ arr[j] * ``10` `+ arr[k]) % ``8` `== ``0` `                             ``&& i != j && j != k && i != k) ` `                        ``return` `true``; ` `                ``} ` `            ``} ` `        ``} ` `        ``return` `false``; ` `    ``} ` ` `  `    ``// Driver function ` `    ``public` `static` `void` `main(String args[]) ` `    ``{ ` ` `  `        ``String str = ``"3144"``; ` `        ``if` `(isSubSeqDivisible(str)) ` `            ``System.out.println(``"Yes"``); ` `        ``else` `            ``System.out.println(``"No"``); ` `    ``} ` `} ` ` `  `// This code is contributed by Nikita Tiwari. `

## Python3

 `# Python 3 program to ` `# check if a subsequence of digits ` `# is divisible by 8. ` ` `  `# Function to calculate any ` `# permutation divisible ` `# by 8. If such permutation ` `# exists, the function ` `# will return that permutation ` `# else it will return -1 ` `def` `isSubSeqDivisible(st) : ` ` `  `    ``l ``=` `len``(st) ` `    ``arr ``=` `[``0``] ``*` `l ` ` `  `    ``# Generating all possible ` `    ``# permutations and checking ` `    ``# if any such permutation ` `    ``# is divisible by 8 ` `    ``for` `i ``in` `range``(``0``, l) : ` `        ``for` `j ``in` `range``(i, l) : ` `            ``for` `k ``in` `range``(j, l) : ` `                ``if` `(arr[i] ``%` `8` `=``=` `0``) : ` `                    ``return` `True` `  `  `                ``elif` `((arr[i]``*``10` `+` `arr[j])``%` `8` `=``=` `0` `and` `i !``=` `j) : ` `                    ``return` `True` `  `  `                ``elif` `((arr[i] ``*` `100` `+` `arr[j] ``*` `10` `+` `arr[k]) ``%` `8` `=``=` `0` `and` `i !``=` `j ``and` `j !``=` `k ``and` `i !``=` `k) : ` `                    ``return` `True` `            `  `    ``return` `False` `  `  `# Driver function ` ` `  `st ``=` `"3144"` `if` `(isSubSeqDivisible(st)) : ` `    ``print``(``"Yes"``) ` `else` `: ` `    ``print``(``"No"``) ` ` `  `# This code is contributed ` `# by Nikita Tiwari. `

## C#

 `// C# program to check if a subsequence ` `// of digits is divisible by 8. ` `using` `System; ` ` `  `class` `GFG { ` ` `  `    ``// Function to calculate any permutation ` `    ``// divisible by 8. If such permutation ` `    ``// exists, the function will return ` `    ``// that permutation else it will return -1 ` `    ``static` `bool` `isSubSeqDivisible(``string` `str) ` `    ``{ ` `        ``int` `i, j, k, l = str.Length; ` `        ``int``[] arr = ``new` `int``[l]; ` ` `  `        ``// Generating all possible permutations ` `        ``// and checking if any such ` `        ``// permutation is divisible by 8 ` `        ``for` `(i = 0; i < l; i++) { ` `            ``for` `(j = i; j < l; j++) { ` `                ``for` `(k = j; k < l; k++) { ` `                    ``if` `(arr[i] % 8 == 0) ` `                        ``return` `true``; ` ` `  `                    ``else` `if` `((arr[i] * 10 + arr[j]) ` `                                     ``% 8 ` `                                 ``== 0 ` `                             ``&& i != j) ` `                        ``return` `true``; ` ` `  `                    ``else` `if` `((arr[i] * 100 + arr[j] * 10 + arr[k]) % 8 == 0 ` `                             ``&& i != j && j != k ` `                             ``&& i != k) ` `                        ``return` `true``; ` `                ``} ` `            ``} ` `        ``} ` ` `  `        ``return` `false``; ` `    ``} ` ` `  `    ``// Driver function ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``string` `str = ``"3144"``; ` ` `  `        ``if` `(isSubSeqDivisible(str)) ` `            ``Console.WriteLine(``"Yes"``); ` `        ``else` `            ``Console.WriteLine(``"No"``); ` `    ``} ` `} ` ` `  `// This code is contributed by vt_m. `

## PHP

 ` `

Output :

```Yes
```

Method 2 (Dynamic Programming):

Though we have only 100 digit number, but for longer examples larger than that, our program might exceed the given time limit.
Thus, we optimize our code by using dynamic programming approach.
Let be the ith digit of the sample. We generate a matrix dp[i][j], 1<=i<=n and 0<=j<8. The value of dp is true if we can cross out some digits from the prefix of length i such that the remaining number gives j modulo eight, and false otherwise. For broad understanding of the concept, if at an index, we find element modulo 8 for that index we put the value of
For all other numbers, we build on a simple concept that either addition of that digit will contribute in formation of a number divisible by 8, or it shall be left out.
Note: We also have to keep it in mind that we cannot change the order
Now,
if we add the current digit to the previous result.
if we exclude the current digit in our formation.
Now, if such a number shall exist, we will get a “true” for any i in dp[i][0]

## C++

 `// C++ program to find if there is a subsequence ` `// of digits divisible by 8. ` `#include ` `using` `namespace` `std; ` ` `  `// Function takes in an array of numbers, ` `// dynamically goes on the location and ` `// makes combination of numbers. ` `bool` `isSubSeqDivisible(string str) ` `{ ` `    ``int` `n = str.length(); ` `    ``int` `dp[n + 1][10]; ` `    ``memset``(dp, 0, ``sizeof``(dp)); ` ` `  `    ``// Converting string to integer array for ease ` `    ``// of computations (Indexing in arr[] is ` `    ``// considered to be starting from 1) ` `    ``int` `arr[n + 1]; ` `    ``for` `(``int` `i = 1; i <= n; i++) ` `        ``arr[i] = str[i - 1] - ``'0'``; ` ` `  `    ``for` `(``int` `i = 1; i <= n; i++) { ` ` `  `        ``dp[i][arr[i] % 8] = 1; ` `        ``for` `(``int` `j = 0; j < 8; j++) { ` ` `  `            ``// If we consider the number in our combination, ` `            ``// we add it to the previous combination ` `            ``if` `(dp[i - 1][j] > dp[i][(j * 10 + arr[i]) % 8]) ` `                ``dp[i][(j * 10 + arr[i]) % 8] = dp[i - 1][j]; ` ` `  `            ``// If we exclude the number from our combination ` `            ``if` `(dp[i - 1][j] > dp[i][j]) ` `                ``dp[i][j] = dp[i - 1][j]; ` `        ``} ` `    ``} ` ` `  `    ``for` `(``int` `i = 1; i <= n; i++) { ` ` `  `        ``// If at dp[i][0], we find value 1/true, it shows ` `        ``// that the number exists at the value of 'i' ` `        ``if` `(dp[i][0] == 1) ` `            ``return` `true``; ` `    ``} ` ` `  `    ``return` `false``; ` `} ` ` `  `// Driver function ` `int` `main() ` `{ ` `    ``string str = ``"3144"``; ` `    ``if` `(isSubSeqDivisible(str)) ` `        ``cout << ``"Yes"``; ` `    ``else` `        ``cout << ``"No"``; ` `    ``return` `0; ` `} `

## Java

 `// Java program to find if there is a ` `// subsequence of digits divisible by 8. ` `import` `java.io.*; ` `import` `java.util.*; ` ` `  `class` `GFG { ` ` `  `    ``// Function takes in an array of numbers, ` `    ``// dynamically goes on the location and ` `    ``// makes combination of numbers. ` `    ``static` `boolean` `isSubSeqDivisible(String str) ` `    ``{ ` ` `  `        ``int` `n = str.length(); ` `        ``int` `dp[][] = ``new` `int``[n + ``1``][``10``]; ` ` `  `        ``// Converting string to integer array ` `        ``// for ease of computations (Indexing in ` `        ``// arr[] is considered to be starting ` `        ``// from 1) ` `        ``int` `arr[] = ``new` `int``[n + ``1``]; ` `        ``for` `(``int` `i = ``1``; i <= n; i++) ` `            ``arr[i] = (``int``)(str.charAt(i - ``1``) - ``'0'``); ` ` `  `        ``for` `(``int` `i = ``1``; i <= n; i++) { ` ` `  `            ``dp[i][arr[i] % ``8``] = ``1``; ` `            ``for` `(``int` `j = ``0``; j < ``8``; j++) { ` ` `  `                ``// If we consider the number in ` `                ``// our combination, we add it to ` `                ``// the previous combination ` `                ``if` `(dp[i - ``1``][j] > dp[i][(j * ``10` `                                          ``+ arr[i]) ` `                                         ``% ``8``]) ` `                    ``dp[i][(j * ``10` `+ arr[i]) % ``8``] ` `                        ``= dp[i - ``1``][j]; ` ` `  `                ``// If we exclude the number from ` `                ``// our combination ` `                ``if` `(dp[i - ``1``][j] > dp[i][j]) ` `                    ``dp[i][j] = dp[i - ``1``][j]; ` `            ``} ` `        ``} ` ` `  `        ``for` `(``int` `i = ``1``; i <= n; i++) { ` ` `  `            ``// If at dp[i][0], we find value 1/true, ` `            ``// it shows that the number exists at ` `            ``// the value of 'i' ` `            ``if` `(dp[i][``0``] == ``1``) ` `                ``return` `true``; ` `        ``} ` ` `  `        ``return` `false``; ` `    ``} ` ` `  `    ``// Driver function ` `    ``public` `static` `void` `main(String args[]) ` `    ``{ ` `        ``String str = ``"3144"``; ` `        ``if` `(isSubSeqDivisible(str)) ` `            ``System.out.println(``"Yes"``); ` `        ``else` `            ``System.out.println(``"No"``); ` `    ``} ` `} ` ` `  `/* This code is contributed by Nikita Tiwari.*/`

## Python3

 `# Python3 program to find  ` `# if there is a subsequence  ` `# of digits divisible by 8. ` ` `  `# Function takes in an array of numbers,  ` `# dynamically goes on the location and  ` `# makes combination of numbers. ` `def` `isSubSeqDivisible(``str``): ` `    ``n ``=` `len``(``str``) ` `    ``dp ``=` `[[``0` `for` `i ``in` `range``(``10``)]  ` `             ``for` `i ``in` `range``(n ``+` `1``)] ` `              `  `    ``# Converting string to integer  ` `    ``# array for ease of computations  ` `    ``# (Indexing in arr[] is considered ` `    ``# to be starting from 1)  ` `    ``arr ``=` `[``0` `for` `i ``in` `range``(n ``+` `1``)] ` `    ``for` `i ``in` `range``(``1``, n ``+` `1``): ` `        ``arr[i] ``=` `int``(``str``[i ``-` `1``]);  ` ` `  `    ``for` `i ``in` `range``(``1``, n ``+` `1``): ` `        ``dp[i][arr[i] ``%` `8``] ``=` `1``;  ` `        ``for` `j ``in` `range``(``8``): ` `             `  `            ``# If we consider the number ` `            ``# in our combination, we add  ` `            ``# it to the previous combination  ` `            ``if` `(dp[i ``-` `1``][j] > dp[i][(j ``*` `10` `+` `arr[i]) ``%` `8``]): ` `                ``dp[i][(j ``*` `10` `+` `arr[i]) ``%` `8``] ``=` `dp[i ``-` `1``][j] ` `                 `  `            ``# If we exclude the number  ` `            ``# from our combination ` `            ``if` `(dp[i ``-` `1``][j] > dp[i][j]): ` `                ``dp[i][j] ``=` `dp[i ``-` `1``][j] ` ` `  `    ``for` `i ``in` `range``(``1``, n ``+` `1``): ` `         `  `        ``# If at dp[i][0], we find  ` `        ``# value 1/true, it shows ` `        ``# that the number exists  ` `        ``# at the value of 'i' ` `        ``if` `(dp[i][``0``] ``=``=` `1``): ` `            ``return` `True` `    ``return` `False` ` `  `# Driver Code  ` `str` `=` `"3144"` `if` `(isSubSeqDivisible(``str``)): ` `    ``print``(``"Yes"``)  ` `else``: ` `    ``print``(``"No"``) ` `     `  `# This code is contributed  ` `# by sahilshelangia `

## C#

 `// C# program to find if there is a ` `// subsequence of digits divisible by 8. ` `using` `System; ` ` `  `class` `GFG { ` ` `  `    ``// Function takes in an array of numbers, ` `    ``// dynamically goes on the location and ` `    ``// makes combination of numbers. ` `    ``static` `bool` `isSubSeqDivisible(String str) ` `    ``{ ` ` `  `        ``int` `n = str.Length; ` `        ``int``[, ] dp = ``new` `int``[n + 1, 10]; ` ` `  `        ``// Converting string to integer array ` `        ``// for ease of computations (Indexing in ` `        ``// arr[] is considered to be starting ` `        ``// from 1) ` `        ``int``[] arr = ``new` `int``[n + 1]; ` `        ``for` `(``int` `i = 1; i <= n; i++) ` `            ``arr[i] = (``int``)(str[i - 1] - ``'0'``); ` ` `  `        ``for` `(``int` `i = 1; i <= n; i++) { ` `            ``dp[i, arr[i] % 8] = 1; ` `            ``for` `(``int` `j = 0; j < 8; j++) { ` ` `  `                ``// If we consider the number in ` `                ``// our combination, we add it to ` `                ``// the previous combination ` `                ``if` `(dp[i - 1, j] > dp[i, (j * 10 ` `                                          ``+ arr[i]) ` `                                             ``% 8]) ` `                    ``dp[i, (j * 10 + arr[i]) % 8] ` `                        ``= dp[i - 1, j]; ` ` `  `                ``// If we exclude the number from ` `                ``// our combination ` `                ``if` `(dp[i - 1, j] > dp[i, j]) ` `                    ``dp[i, j] = dp[i - 1, j]; ` `            ``} ` `        ``} ` ` `  `        ``for` `(``int` `i = 1; i <= n; i++) { ` ` `  `            ``// If at dp[i][0], we find value ` `            ``// 1/true, it shows that the number ` `            ``// exists at the value of 'i' ` `            ``if` `(dp[i, 0] == 1) ` `                ``return` `true``; ` `        ``} ` ` `  `        ``return` `false``; ` `    ``} ` ` `  `    ``// Driver function ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``string` `str = ``"3144"``; ` ` `  `        ``if` `(isSubSeqDivisible(str)) ` `            ``Console.WriteLine(``"Yes"``); ` `        ``else` `            ``Console.WriteLine(``"No"``); ` `    ``} ` `} ` ` `  `// This code is contributed by vt_m. `

## PHP

 ` ``\$dp``[``\$i``][(``\$j` `* 10 +  ` `                                           ``\$arr``[``\$i``]) % 8]) ` `                ``\$dp``[``\$i``][(``\$j` `* 10 +  ` `                         ``\$arr``[``\$i``]) % 8] = ``\$dp``[``\$i` `- 1][``\$j``]; ` ` `  `            ``// If we exclude the number  ` `            ``// from our combination ` `            ``if` `(``\$dp``[``\$i` `- 1][``\$j``] > ``\$dp``[``\$i``][``\$j``]) ` `                ``\$dp``[``\$i``][``\$j``] = ``\$dp``[``\$i` `- 1][``\$j``]; ` `        ``} ` `    ``} ` ` `  `    ``for` `(``\$i` `= 1; ``\$i` `<= ``\$n``; ``\$i``++) ` `    ``{ ` ` `  `        ``// If at dp[i][0], we find value 1/true, ` `        ``// it shows that the number exists at ` `        ``// the value of 'i' ` `        ``if` `(``\$dp``[``\$i``][0] == 1) ` `            ``return` `true; ` `    ``} ` ` `  `    ``return` `false; ` `} ` ` `  `// Driver Code ` `\$str` `= ``"3144"``; ` `if` `(isSubSeqDivisible(``\$str``)) ` `    ``echo` `"Yes"``; ` `else` `    ``echo` `"No"``; ` ` `  `// This code is contributed ` `// by ChitraNayal ` `?> `

Output :

```Yes
```

Using the dynamic approach, our time complexity cuts down to , where 8 is from which the number should be divisible and n is the length of our input. Therefore, the overall complexity is .