Tutorialspoint.dev

Number of perfect squares between two given numbers

Given two given numbers a and b where 1<=a<=b, find the number of perfect squares between a and b (a and b inclusive).

Examples

Input :  a = 3, b = 8
Output : 1
The only perfect in given range is 4.

Input : a = 9, b = 25
Output : 3
The three squares in given range are 9, 
16 and 25


Method 1 : One naive approach is to check all the numbers between a and b (inclusive a and b) and increase count by one whenever we encounter a perfect square.

Below is the implementation of above idea :

C++

// A Simple Method to count squares between a and b
#include <bits/stdc++.h>
using namespace std;
  
int countSquares(int a, int b)
{
    int cnt = 0; // Initialize result
  
    // Traverse through all numbers
    for (int i = a; i <= b; i++)
  
        // Check if current number 'i' is perfect
        // square
        for (int j = 1; j * j <= i; j++)
            if (j * j == i)
                cnt++;
  
    return cnt;
}
  
// Driver code
int main()
{
    int a = 9, b = 25;
    cout << "Count of squares is "
         << countSquares(a, b);
    return 0;
}

/div>

Java

// Java program to count squares between a and b
class CountSquares {
  
    static int countSquares(int a, int b)
    {
        int cnt = 0; // Initialize result
  
        // Traverse through all numbers
        for (int i = a; i <= b; i++)
  
            // Check if current number 'i' is perfect
            // square
            for (int j = 1; j * j <= i; j++)
                if (j * j == i)
                    cnt++;
        return cnt;
    }
}
  
// Driver Code
public class PerfectSquares {
    public static void main(String[] args)
    {
        int a = 9, b = 25;
        CountSquares obj = new CountSquares();
        System.out.print("Count of squares is " + obj.countSquares(a, b));
    }
}

Python

# Python program to count squares between a and b
  
def CountSquares(a, b):
  
    cnt = 0 # initialize result
  
    # Traverse through all numbers
    for i in range (a, b + 1):
        j = 1;
        while j * j <= i:
            if j * j == i:
                 cnt = cnt + 1
            j = j + 1
        i = i + 1
    return cnt
  
# Driver Code
a = 9
b = 25
print "Count of squares is:", CountSquares(a, b)

C#

// C# program to count squares
// between a and b
using System;
  
class GFG {
  
    // Function to count squares
    static int countSquares(int a, int b)
    {
        // Initialize result
        int cnt = 0;
  
        // Traverse through all numbers
        for (int i = a; i <= b; i++)
  
            // Check if current number
            // 'i' is perfect square
            for (int j = 1; j * j <= i; j++)
                if (j * j == i)
                    cnt++;
        return cnt;
    }
  
    // Driver Code
    public static void Main()
    {
        int a = 9, b = 25;
        Console.Write("Count of squares is " + countSquares(a, b));
    }
}
  
// This code is contributed by Sam007

PHP

<?php
// A Simple Method to count squares
//between a and b
  
function countSquares($a, $b)
{
    $cnt = 0; // Initialize result
  
    // Traverse through all numbers
    for ($i = $a; $i <= $b; $i++)
  
        // Check if current number
        // 'i' is perfect square
        for ($j = 1; $j * $j <= $i;
                              $j++)
            if ($j * $j == $i)
                $cnt++;
  
    return $cnt;
}
  
// Driver code
  
    $a = 9; $b = 25;
    echo "Count of squares is ".
              countSquares($a, $b);
  
// This code is contributed by ajit.
?>

Output :



Count of squares is 3

An upper bound on time Complexity of this solution is O((b-a) * sqrt(b)).

 

Method 2 (Efficient) We can simply take square root of ‘a’ and square root of ‘b’ and count the perfect squares between them using

floor(sqrt(b)) - ceil(sqrt(a)) + 1

We take floor of sqrt(b) because we need to consider 
numbers before b.

We take ceil of sqrt(a) because we need to consider 
numbers after a.


For example, let b = 24, a = 8.  floor(sqrt(b)) = 4, 
ceil(sqrt(a)) = 3.  And number of squares is 4 - 3 + 1
= 2. The two numbers are 9 and 16.

Below is the implementation of above idea :

C++

// An Efficient Method to count squares between a and b
#include <bits/stdc++.h>
using namespace std;
  
// An efficient solution to count square between a
// and b
int countSquares(int a, int b)
{
    return (floor(sqrt(b)) - ceil(sqrt(a)) + 1);
}
  
// Driver code
int main()
{
    int a = 9, b = 25;
    cout << "Count of squares is "
         << countSquares(a, b);
    return 0;
}

Java

// An Efficient method to count squares between
// a and b
class CountSquares {
    double countSquares(int a, int b)
    {
        return (Math.floor(Math.sqrt(b)) - Math.ceil(Math.sqrt(a)) + 1);
    }
}
  
// Driver Code
public class PerfectSquares {
    public static void main(String[] args)
    {
        int a = 9, b = 25;
        CountSquares obj = new CountSquares();
        System.out.print("Count of squares is " + (int)obj.countSquares(a, b));
    }
}

Python

# An Efficient Method to count squares between a
# and b
import math
def CountSquares(a, b):
    return (math.floor(math.sqrt(b)) - math.ceil(math.sqrt(a)) + 1)
  
# Driver Code
a = 9
b = 25
print "Count of squares is:", int(CountSquares(a, b))

C#

// C# program for efficient method
// to count squares between a & b
using System;
  
class GFG {
  
    // Function to count squares
    static double countSquares(int a, int b)
    {
        return (Math.Floor(Math.Sqrt(b)) - Math.Ceiling(Math.Sqrt(a)) + 1);
    }
  
    // Driver Code
    public static void Main()
    {
        int a = 9, b = 25;
        Console.Write("Count of squares is " + (int)countSquares(a, b));
    }
}
  
// This code is contributed by Sam007.

PHP

<?php
// An Efficient PHP code to count
// squares between a and b
  
// Method to count square
// between a and b
function countSquares($a, $b)
{
    return (floor(sqrt($b)) - 
            ceil(sqrt($a)) + 1);
}
  
// Driver code
{
    $a = 9;
    $b = 25;
    echo "Count of squares is "
           countSquares($a, $b);
    return 0;
}
// This code is contributed by nitin mittal.
?>


Output :

Count of squares is 3

Time complexity of this solution is O(Log b). A typical implementation of square root for a number n takes time equal to O(Log n) [See this for a sample implementation of square root]

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



This article is attributed to GeeksforGeeks.org

You Might Also Like

leave a comment

code

0 Comments

load comments

Subscribe to Our Newsletter