Tutorialspoint.dev

Maximum height when coins are arranged in a triangle

We have N coins which need to arrange in form of a triangle, i.e. first row will have 1 coin, second row will have 2 coins and so on, we need to tell maximum height which we can achieve by using these N coins.

Examples:

Input : N = 7
Output : 3
Maximum height will be 3, putting 1, 2 and
then 3 coins. It is not possible to use 1 
coin left.

Input : N = 12
Output : 4
Maximum height will be 4, putting 1, 2, 3 and 
4 coins, it is not possible to make height as 5, 
because that will require 15 coins.



This problem can be solved by finding a relation between height of the triangle and number of coins. Let maximum height is H, then total sum of coin should be less than N,

Sum of coins for height H <= N
            H*(H + 1)/2  <= N
        H*H + H – 2*N <= 0
Now by Quadratic formula 
(ignoring negative root)

Maximum H can be (-1 + √(1 + 8N)) / 2 

Now we just need to find the square root of (1 + 8N) for
which we can use Babylonian method of finding square root

Below code is implemented on above stated concept,

CPP

//  C++ program to find maximum height of arranged
// coin triangle
#include <bits/stdc++.h>
using namespace std;
  
/* Returns the square root of n. Note that the function */
float squareRoot(float n)
{
    /* We are using n itself as initial approximation
      This can definitely be improved */
    float x = n;
    float y = 1;
  
    float e = 0.000001; /* e decides the accuracy level*/
    while (x - y > e)
    {
        x = (x + y) / 2;
        y = n/x;
    }
    return x;
}
  
//  Method to find maximum height of arrangement of coins
int findMaximumHeight(int N)
{
    //  calculating portion inside the square root
    int n = 1 + 8*N;
    int maxH = (-1 + squareRoot(n)) / 2;
    return maxH;
}
  
//  Driver code to test above method
int main()
{
    int N = 12;
    cout << findMaximumHeight(N) << endl;
    return 0;
}

/div>

Java

// Java program to find maximum height 
// of arranged coin triangle
class GFG
{
      
    /* Returns the square root of n. 
    Note that the function */
    static float squareRoot(float n)
    {
          
        /* We are using n itself as 
        initial approximation.This 
        can definitely be improved */
        float x = n;
        float y = 1;
          
        // e decides the accuracy level
        float e = 0.000001f; 
        while (x - y > e)
        {
            x = (x + y) / 2;
            y = n / x;
        }
          
        return x;
    }
      
    // Method to find maximum height 
    // of arrangement of coins
    static int findMaximumHeight(int N)
    {
          
        // calculating portion inside 
        // the square root
        int n = 1 + 8*N;
        int maxH = (int)(-1 + squareRoot(n)) / 2;
          
        return maxH;
    
      
    // Driver code 
    public static void main (String[] args)
    {
        int N = 12;
          
        System.out.print(findMaximumHeight(N));
    }
}
  
// This code is contributed by Anant Agarwal.

Python3

# Python3 program to find
# maximum height of arranged
# coin triangle
  
# Returns the square root of n.
# Note that the function 
def squareRoot(n):
   
    # We are using n itself as
        # initial approximation
    # This can definitely be improved 
    x =
    y = 1 
  
    e = 0.000001  # e decides the accuracy level 
    while (x - y > e):
        x = (x + y) / 2
        y = n/x
          
    return
   
  
# Method to find maximum height
# of arrangement of coins
def findMaximumHeight(N):
   
    # calculating portion inside the square root
    n = 1 + 8*
    maxH = (-1 + squareRoot(n)) / 2
    return int(maxH) 
   
  
# Driver code to test above method
N = 12 
print(findMaximumHeight(N))
  
# This code is contributed by
# Smitha Dinesh Semwal

C#

// C# program to find maximum height 
// of arranged coin triangle
using System;
  
class GFG
{
    /* Returns the square root of n. 
    Note that the function */
    static float squareRoot(float n)
    {
        /* We are using n itself as
        initial approximation.This
        can definitely be improved */
        float x = n;
        float y = 1;
  
        // e decides the accuracy level
        float e = 0.000001f;
        while (x - y > e)
        {
            x = (x + y) / 2;
            y = n / x;
        }
        return x;
    }
      
    static int findMaximumHeight(int N)
    {
  
        // calculating portion inside
        // the square root
        int n = 1 + 8*N;
        int maxH = (int)(-1 + squareRoot(n)) / 2;
  
        return maxH;
    }
  
    /* program to test above function */
    public static void Main()
    {
        int N = 12;
        Console.Write(findMaximumHeight(N));
    }
}
  
// This code is contributed by _omg

PHP

<?php
// PHP program to find maximum height
// of arranged coin triangle
  
  
/* Returns the square root of n. Note
that the function */
function squareRoot( $n)
{
    /* We are using n itself as initial
    approximation This can definitely
    be improved */
    $x = $n;
    $y = 1;
  
    /* e decides the accuracy level*/
    $e = 0.000001;
    while ($x - $y > $e)
    {
        $x = ($x + $y) / 2;
        $y = $n/$x;
    }
    return $x;
}
  
// Method to find maximum height of 
// arrangement of coins
function findMaximumHeight( $N)
{
      
    // calculating portion inside
    // the square root
    $n = 1 + 8 * $N;
    $maxH = (-1 + squareRoot($n)) / 2;
    return floor($maxH);
}
  
// Driver code to test above method
$N = 12;
echo findMaximumHeight($N) ;
  
// This code is contributed by anuj_67.
?>


Output:

4

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



This article is attributed to GeeksforGeeks.org

You Might Also Like

leave a comment

code

0 Comments

load comments

Subscribe to Our Newsletter