Tutorialspoint.dev

Find points at a given distance on a line of given slope

Given the co-ordinates of a 2-dimensional point p(x0, y0). Find the points at a distance L away from it, such that the line formed by joining these points has a slope of M.

Examples:

Input : p = (2, 1)
        L = sqrt(2)
        M = 1
Output :3, 2
        1, 0
Explanation:
The two points are sqrt(2) distance away 
from the source and have the required slope
m = 1.

Input : p = (1, 0)
        L = 5
        M = 0
Output : 6, 0
        -4, 0



We need to find two points that are L distance from given point, on a line with slope M.

The idea has been introduced in below post.
Find Corners of Rectangle using mid points

Based on the input slope, the problem can be classified into 3 categories.

  1. If slope is zero, we just need to adjust the x coordinate of the source point
  2. If slope is infinite, the we need to adjust the y coordinate
  3. For other values of slope, we can use the following equations to find the points
  Given  that  the  point (x, y)  is  at  distance  I  away  from  (x_0, y_0) 
ewline 
ewline (y-y_0)^{2} + (x-x_0)^{2}= l^{2} 
ewline 
ewline Also  as  the  line   that  passes  through  (x, y)  and  (x0, y0)  satisfies 
ewline 
ewline frac{y-y_0}{x-x_0}= m 
ewline 
ewline Rearranging  we  get 
ewline y=y_0+m*(x-x_0) 
ewline 
ewline  Putting  the  values  in  first  equation 
ewline 
ewline  m^2.(x-x_0)^2+(x-x_0)^2=l^2 
ewline 
ewline Hence,  we  have 
ewline 
ewline x=x_0pm l.sqrt{frac{1}{1+m^2}} 
ewline 
ewline y=y_0 pm m.l.sqrt{frac{1}{1+m^2}}

Now using the above formula we can find the required points.

// C++ program to find the points on a line of
// slope M at distance L
#include <bits/stdc++.h>
using namespace std;
  
// structure to represent a co-ordinate
// point
struct Point {
  
    float x, y;
    Point()
    {
        x = y = 0;
    }
    Point(float a, float b)
    {
        x = a, y = b;
    }
};
  
// Function to print pair of points at
// distance 'l' and having a slope 'm'
// from the source
void printPoints(Point source, float l, 
                                 int m)
{
    // m is the slope of line, and the 
    // required Point lies distance l 
    // away from the source Point
    Point a, b;
  
    // slope is 0
    if (m == 0) {
        a.x = source.x + l;
        a.y = source.y;
  
        b.x = source.x - l;
        b.y = source.y;
    }
  
    // if slope is infinte
    else if (m == std::numeric_limits<float>
                                 ::max()) {
        a.x = source.x;
        a.y = source.y + l;
  
        b.x = source.x;
        b.y = source.y - l;
    
    else {
        float dx = (l / sqrt(1 + (m * m)));
        float dy = m * dx;
        a.x = source.x + dx;
        a.y = source.y + dy;
        b.x = source.x - dx;
        b.y = source.y - dy;
    }
  
    // print the first Point
    cout << a.x << ", " << a.y << endl;
  
    // print the second Point
    cout << b.x << ", " << b.y << endl;
}
  
// driver function
int main()
{
    Point p(2, 1), q(1, 0);
    printPoints(p, sqrt(2), 1);
    cout << endl;
    printPoints(q, 5, 0);
    return 0;
}

Output:

3, 2
1, 0

6, 0
-4, 0

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



This article is attributed to GeeksforGeeks.org

leave a comment

code

0 Comments

load comments

Subscribe to Our Newsletter