Tutorialspoint.dev

Sequences of given length where every element is more than or equal to twice of previous

Given two integers m & n, find the number of possible sequences of length n such that each of the next element is greater than or equal to twice of the previous element but less than or equal to m.

Examples :

Input : m = 10, n = 4
Output : 4
There should be n elements and value of last
element should be at-most m.
The sequences are {1, 2, 4, 8}, {1, 2, 4, 9},
                 {1, 2, 4, 10}, {1, 2, 5, 10}

Input : m = 5, n = 2
Output : 6
The sequences are {1, 2}, {1, 3}, {1, 4},
                  {1, 5}, {2, 4}, {2, 5}



As per the given condition the n-th value of the sequence can be at most m. There can be two cases for n-th element:

  1. If it is m, then the (n-1)th element is at most m/2. We recur for m/2 and n-1.
  2. If it is not m, then the n-1th element is at most is m-1. We recur for (m-1) and n.

The total number of sequences is the sum of the number of sequences including m and the number of sequences where m is not included. Thus the original problem of finding number of sequences of length n with max value m can be subdivided into independent subproblems of finding number of sequences of length n with max value m-1 and number of sequences of length n-1 with max value m/2.

C++

// C program to count total number of special sequences
// of length n where
#include <stdio.h>
  
// Recursive function to find the number of special
// sequences
int  getTotalNumberOfSequences(int m, int n)
{
    // A special sequence cannot exist if length
    // n is more than the maximum value m.
    if (m < n)
        return 0;
  
    // If n is 0, found an empty special sequence
    if (n == 0)
        return 1;
  
    // There can be two possibilities : (1) Reduce
    // last element value (2) Consider last element
    // as m and reduce number of terms
    return getTotalNumberOfSequences (m-1, n) +
           getTotalNumberOfSequences (m/2, n-1);
}
  
// Driver Code
int main()
{
    int m = 10;
    int n = 4;
    printf("Total number of possible sequences %d",
                   getTotalNumberOfSequences(m, n));
    return 0;
}

Java

// Java program to count total number 
// of special sequences of length n where
class Sequences
{
    // Recursive function to find the number of special
    // sequences
    static int  getTotalNumberOfSequences(int m, int n)
    {
        // A special sequence cannot exist if length
        // n is more than the maximum value m.
        if(m < n)
            return 0;
       
        // If n is 0, found an empty special sequence
        if(n == 0)
            return 1;
       
        // There can be two possibilities : (1) Reduce
        // last element value (2) Consider last element
        // as m and reduce number of terms
        return getTotalNumberOfSequences (m-1, n) +
               getTotalNumberOfSequences (m/2, n-1);
    }   
      
    // main function
    public static void main (String[] args) 
    {
        int m = 10;
        int n = 4;
        System.out.println("Total number of possible sequences "+
                       getTotalNumberOfSequences(m, n));
    }
}

Python3

#Python3 program to count total number of 
#special sequences of length n where 
#Recursive function to find the number of
# special sequences
def getTotalNumberOfSequences(m,n):
  
    #A special sequence cannot exist if length 
    #n is more than the maximum value m. 
    if m<n:
        return 0
  
    #If n is 0, found an empty special sequence 
    if n==0:
        return 1
  
    #There can be two possibilities : (1) Reduce
    #last element value (2) Consider last element 
    #as m and reduce number of terms 
    res=(getTotalNumberOfSequences(m-1,n)+
         getTotalNumberOfSequences(m//2,n-1))
    return res
  
#Driver Code
if __name__=='__main__':
    m=10
    n=4
    print('Total number of possible sequences:',getTotalNumberOfSequences(m,n))
      
#This code is contributed by sahilshelangia

C#

// C# program to count total number 
// of special sequences of length n 
// where every element is more than 
// or equal to twice of previous
using System;
  
class GFG
{
    // Recursive function to find 
    // the number of special sequences
    static int getTotalNumberOfSequences(int m, int n)
    {
        // A special sequence cannot exist if length
        // n is more than the maximum value m.
        if(m < n)
            return 0;
      
        // If n is 0, found an empty special sequence
        if(n == 0)
            return 1;
      
        // There can be two possibilities : (1) Reduce
        // last element value (2) Consider last element
        // as m and reduce number of terms
        return getTotalNumberOfSequences (m-1, n) +
               getTotalNumberOfSequences (m/2, n-1);
    
      
    // Driver code
    public static void Main () 
    {
        int m = 10;
        int n = 4;
        Console.Write("Total number of possible sequences " +
                           getTotalNumberOfSequences(m, n));
    }
}
  
// This code is contributed by nitin mittal.

PHP

<?php
// PHP program to count total 
// number of special sequences
// of length n where
  
// Recursive function to find 
// the number of special sequences
function getTotalNumberOfSequences($m, $n)
{
      
    // A special sequence cannot 
    // exist if length n is more 
    // than the maximum value m.
    if ($m < $n)
        return 0;
  
    // If n is 0, found an empty 
    // special sequence
    if ($n == 0)
        return 1;
  
    // There can be two possibilities : 
    // (1) Reduce last element value
    // (2) Consider last element
    // as m and reduce number of terms
    return getTotalNumberOfSequences($m - 1, $n) +
           getTotalNumberOfSequences($m / 2, $n - 1);
}
  
    // Driver Code
    $m = 10;
    $n = 4;
    echo("Total number of possible sequences ");
    echo (getTotalNumberOfSequences($m, $n));
  
// This code is contributed by nitin mittal.
?>


Output:

Total number of possible sequences 4

Note that the above function computes the same sub problems again and again. Consider the following tree for f(10, 4).

Recursive Tree for m= 10 and N =4

We can solve this problem using dynamic programming.

C++

// C program to count total number of special sequences
// of length N where
#include <stdio.h>
  
// DP based function to find the number of special
// sequences
int  getTotalNumberOfSequences(int m, int n)
{
        // define T and build in bottom manner to store
        // number of special sequences of length n and
        // maximum value m
        int T[m+1][n+1];
        for (int i=0; i<m+1; i++)
        {
            for (int j=0; j<n+1; j++)
            {
                // Base case : If length of sequence is 0
                // or maximum value is 0, there cannot
                // exist any special sequence
                if (i == 0 || j == 0)
                    T[i][j] = 0;
  
                // if length of sequence is more than
                // the maximum value, special sequence
                // cannot exist
                else if (i < j)
                    T[i][j] = 0;
  
                // If length of sequence is 1 then the
                // number of special sequences is equal
                // to the maximum value
                // For example with maximum value 2 and
                // length 1, there can be 2 special
                // sequences {1}, {2}
                else if (j == 1)
                    T[i][j] = i;
  
                // otherwise calculate
                else
                    T[i][j] = T[i-1][j] + T[i/2][j-1];
            }
        }
        return T[m][n];
}
  
// Driver Code
int main()
{
    int m = 10;
    int n = 4;
    printf("Total number of possible sequences %d",
                   getTotalNumberOfSequences(m, n));
    return 0;
}

Java

// Efficient java program to count total number 
// of special sequences of length n where
class Sequences
{
    // DP based function to find the number of special
    // sequences
    static int  getTotalNumberOfSequences(int m, int n)
    {
            // define T and build in bottom manner to store
            // number of special sequences of length n and
            // maximum value m
            int T[][]=new int[m+1][n+1];
            for (int i=0; i<m+1; i++)
            {
                for (int j=0; j<n+1; j++)
                {
                    // Base case : If length of sequence is 0
                    // or maximum value is 0, there cannot
                    // exist any special sequence
                    if (i == 0 || j == 0)
                        T[i][j] = 0;
       
                    // if length of sequence is more than
                    // the maximum value, special sequence
                    // cannot exist
                    else if (i < j)
                        T[i][j] = 0;
       
                    // If length of sequence is 1 then the
                    // number of special sequences is equal
                    // to the maximum value
                    // For example with maximum value 2 and
                    // length 1, there can be 2 special
                    // sequences {1}, {2}
                    else if (j == 1)
                        T[i][j] = i;
       
                    // otherwise calculate
                    else
                        T[i][j] = T[i-1][j] + T[i/2][j-1];
                }
            }
            return T[m][n];
    }
      
    // main function
    public static void main (String[] args) 
    {
        int m = 10;
        int n = 4;
        System.out.println("Total number of possible sequences "+
                       getTotalNumberOfSequences(m, n));
    }
}

Python3

#Python3 program to count total number of 
#special sequences of length N where
  
#DP based function to find the number
# of special sequence
def getTotalNumberOfSequences(m,n):
  
    #define T and build in bottom manner to store 
    #number of special sequences of length n and 
    #maximum value m 
    T=[[0 for i in range(n+1)] for i in range(m+1)]
    for i in range(m+1):
        for j in range(n+1):
  
            #Base case : If length of sequence is 0 
            # or maximum value is 0, there cannot 
            #exist any special sequence
            if i==0 or j==0:
                T[i][j]=0
  
            #if length of sequence is more than 
            #the maximum value, special sequence
            # cannot exist
            elif i<j:
                T[i][j]=0
  
            # If length of sequence is 1 then the 
            # number of special sequences is equal 
            # to the maximum value 
            # For example with maximum value 2 and 
            # length 1, there can be 2 special 
            # sequences {1}, {2} 
            elif j==1:
                T[i][j]=i
            else:
                T[i][j]=T[i-1][j]+T[i//2][j-1]
    return T[m][n]
      
#Driver Code 
if __name__=='__main__':
    m=10
    n=4
    print('Total number of possible sequences ',getTotalNumberOfSequences(m, n))
  
#This code is contributed by sahilshelangia

C#

// Efficient C# program to count total number 
// of special sequences of length n where
using System;
class Sequences {
      
    // DP based function to find
    // the number of special
    // sequences
    static int getTotalNumberOfSequences(int m, int n)
    {
          
            // define T and build in
            // bottom manner to store
            // number of special sequences
            // of length n and maximum value m
            int [,]T=new int[m + 1, n + 1];
              
            for (int i = 0; i < m + 1; i++)
            {
                for (int j = 0; j < n + 1; j++)
                {
                      
                    // Base case : If length 
                    // of sequence is 0
                    // or maximum value is 
                    // 0, there cannot
                    // exist any special 
                    // sequence
                    if (i == 0 || j == 0)
                        T[i, j] = 0;
      
                    // if length of sequence
                    // is more than the maximum
                    // value, special sequence
                    // cannot exist
                    else if (i < j)
                        T[i,j] = 0;
      
                    // If length of sequence is 1 then the
                    // number of special sequences is equal
                    // to the maximum value
                    // For example with maximum value 2 and
                    // length 1, there can be 2 special
                    // sequences {1}, {2}
                    else if (j == 1)
                        T[i,j] = i;
      
                    // otherwise calculate
                    else
                        T[i,j] = T[i - 1, j] + T[i / 2, j - 1];
                }
            }
            return T[m,n];
    }
      
    // Driver Code
    public static void Main () 
    {
        int m = 10;
        int n = 4;
        Console.WriteLine("Total number of possible sequences "+
                                getTotalNumberOfSequences(m, n));
    }
}
  
// This code is contributed by anuj_67.

PHP

<?php
// PHP program to count total
// number of special sequences
// of length N where
  
// DP based function to find
// the number of special
// sequences
function getTotalNumberOfSequences($m, $n)
{
      
        // define T and build in bottom
        // manner to store number of 
        // special sequences of length 
        // n and maximum value m
        $T = array(array());
          
        for ($i = 0; $i < $m + 1; $i++)
        {
            for ($j = 0; $j < $n + 1; $j++)
            {
                  
                // Base case : If length of 
                // sequence is 0 or maximum
                // value is 0, there cannot
                // exist any special sequence
                if ($i == 0 or $j == 0)
                    $T[$i][$j] = 0;
  
                // if length of sequence is 
                // more than the maximum value,
                // special sequence cannot exist
                else if ($i < $j)
                    $T[$i][$j] = 0;
  
                // If length of sequence is
                // 1 then the number of 
                // special sequences is equal
                // to the maximum value
                // For example with maximum 
                // value 2 and length 1, there
                // can be 2 special sequences 
                // {1}, {2}
                else if ($j == 1)
                    $T[$i][$j] = $i;
  
                // otherwise calculate
                else
                    $T[$i][$j] = $T[$i - 1][$j] + 
                                 $T[$i / 2][$j - 1];
            }
        }
        return $T[$m][$n];
}
  
    // Driver Code
    $m = 10;
    $n = 4;
    echo "Total number of possible sequences ",
            getTotalNumberOfSequences($m, $n);
  
// This code is contributed by anuj_67.
?>


Output:

4

Time Complexity : O(m x n)
Auxiliary Space : O(m x n)

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



This article is attributed to GeeksforGeeks.org

leave a comment

code

0 Comments

load comments

Subscribe to Our Newsletter