# Count even length binary sequences with same sum of first and second half bits

Given a number n, find count of all binary sequences of length 2n such that sum of first n bits is same as sum of last n bits.

Examples:

```Input:  n = 1
Output: 2
There are 2 sequences of length 2*n, the
sequences are 00 and 11

Input:  n = 2
Output: 2
There are 6 sequences of length 2*n, the
sequences are 0101, 0110, 1010, 1001, 0000
and 1111
```

The idea is to fix first and last bits and then recur for n-1, i.e., remaining 2(n-1) bits. There are following possibilities when we fix first and last bits.
1) First and last bits are same, remaining n-1 bits on both sides should also have the same sum.
2) First bit is 1 and last bit is 0, sum of remaining n-1 bits on left side should be 1 less than the sum n-1 bits on right side.
2) First bit is 0 and last bit is 1, sum of remaining n-1 bits on left side should be 1 more than the sum n-1 bits on right side.

Based on above facts, we get below recurrence formula.

diff is the expected difference between sum of first half digits and last half digits. Initially diff is 0.

```                  // When first and last bits are same
// there are two cases, 00 and 11
count(n, diff) =  2*count(n-1, diff) +

// When first bit is 1 and last bit is 0
count(n-1, diff-1) +

// When first bit is 0 and last bit is 1
count(n-1, diff+1)

What should be base cases?
// When n == 1 (2 bit sequences)
1) If n == 1 and diff == 0, return 2
2) If n == 1 and |diff| == 1, return 1

// We can't cover difference of more than n with 2n bits
3) If |diff| > n, return 0
```

Below is the implementation based of above Naive Recursive Solution.

div class="responsive-tabs">

## C++

 `// A Naive Recursive C++ program to count even ` `// length binary sequences such that the sum of ` `// first and second half bits is same ` `#include ` `using` `namespace` `std; ` ` `  `// diff is difference between sums first n bits ` `// and last n bits respectively ` `int` `countSeq(``int` `n, ``int` `diff) ` `{ ` `    ``// We can't cover difference of more ` `    ``// than n with 2n bits ` `    ``if` `(``abs``(diff) > n) ` `        ``return` `0; ` ` `  `    ``// n == 1, i.e., 2 bit long sequences ` `    ``if` `(n == 1 && diff == 0) ` `        ``return` `2; ` `    ``if` `(n == 1 && ``abs``(diff) == 1) ` `        ``return` `1; ` ` `  `    ``int` `res = ``// First bit is 0 & last bit is 1 ` `              ``countSeq(n-1, diff+1) + ` ` `  `              ``// First and last bits are same ` `              ``2*countSeq(n-1, diff) + ` ` `  `              ``// First bit is 1 & last bit is 0 ` `              ``countSeq(n-1, diff-1); ` ` `  `    ``return` `res; ` `} ` ` `  `// Driver program ` `int` `main() ` `{ ` `    ``int` `n = 2; ` `    ``cout << ``"Count of sequences is "` `         ``<< countSeq(2, 0); ` `    ``return` `0; ` `} `

## Java

 `// A Naive Recursive Java program to  ` `// count even length binary sequences  ` `// such that the sum of first and  ` `// second half bits is same ` `import` `java.io.*; ` ` `  `class` `GFG { ` ` `  `// diff is difference between sums  ` `// first n bits and last n bits respectively ` `static` `int` `countSeq(``int` `n, ``int` `diff) ` `{ ` `    ``// We can't cover difference of more ` `    ``// than n with 2n bits ` `    ``if` `(Math.abs(diff) > n) ` `        ``return` `0``; ` ` `  `    ``// n == 1, i.e., 2 bit long sequences ` `    ``if` `(n == ``1` `&& diff == ``0``) ` `        ``return` `2``; ` `    ``if` `(n == ``1` `&& Math.abs(diff) == ``1``) ` `        ``return` `1``; ` ` `  `    ``int` `res = ``// First bit is 0 & last bit is 1 ` `            ``countSeq(n-``1``, diff+``1``) + ` ` `  `            ``// First and last bits are same ` `            ``2``*countSeq(n-``1``, diff) + ` ` `  `            ``// First bit is 1 & last bit is 0 ` `            ``countSeq(n-``1``, diff-``1``); ` ` `  `    ``return` `res; ` `} ` ` `  `// Driver program ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``int` `n = ``2``; ` `    ``System.out.println(``"Count of sequences is "`  `                       ``+ countSeq(``2``, ``0``)); ` `} ` `} ` ` `  `// This code is contributed by Prerna Saini `

## Python3

 `# A Naive Recursive Python  ` `# program to count even length  ` `# binary sequences such that  ` `# the sum of first and second  ` `# half bits is same ` ` `  `# diff is difference between  ` `# sums first n bits and last  ` `# n bits respectively ` `def` `countSeq(n, diff): ` ` `  `    ``# We can't cover difference ` `    ``# of more than n with 2n bits ` `    ``if` `(``abs``(diff) > n): ` `        ``return` `0` ` `  `    ``# n == 1, i.e., 2  ` `    ``# bit long sequences ` `    ``if` `(n ``=``=` `1` `and` `diff ``=``=` `0``): ` `        ``return` `2` `    ``if` `(n ``=``=` `1` `and` `abs``(diff) ``=``=` `1``): ` `        ``return` `1` ` `  `    ``# First bit is 0 & last bit is 1 ` `    ``# First and last bits are same ` `    ``# First bit is 1 & last bit is 0 ` `    ``res ``=` `(countSeq(n ``-` `1``, diff ``+` `1``) ``+`  `           ``2` `*` `countSeq(n ``-` `1``, diff) ``+`  `            ``countSeq(n ``-` `1``, diff ``-` `1``))      ` `             `  `    ``return` `res ` ` `  `# Driver Code ` `n ``=` `2``; ` `print``(``"Count of sequences is %d "` `%` `                  ``(countSeq(``2``, ``0``))) ` `     `  `# This code is contributed  ` `# by Shivi_Aggarwal `

## C#

 `// A Naive Recursive C# program to  ` `// count even length binary sequences  ` `// such that the sum of first and  ` `// second half bits is same ` `using` `System; ` ` `  `class` `GFG { ` ` `  `    ``// diff is difference between sums  ` `    ``// first n bits and last n bits  ` `    ``// respectively ` `    ``static` `int` `countSeq(``int` `n, ``int` `diff) ` `    ``{ ` `        ``// We can't cover difference  ` `        ``// of more than n with 2n bits ` `        ``if` `(Math.Abs(diff) > n) ` `            ``return` `0; ` `     `  `        ``// n == 1, i.e., 2 bit long  ` `        ``// sequences ` `        ``if` `(n == 1 && diff == 0) ` `            ``return` `2; ` `        ``if` `(n == 1 && Math.Abs(diff) == 1) ` `            ``return` `1; ` `     `  `        ``// 1. First bit is 0 & last bit is 1 ` `        ``// 2. First and last bits are same ` `        ``// 3. First bit is 1 & last bit is 0 ` `        ``int` `res = countSeq(n-1, diff+1) + ` `                ``2 * countSeq(n-1, diff) + ` `                   ``countSeq(n-1, diff-1); ` `     `  `        ``return` `res; ` `    ``} ` `     `  `    ``// Driver program ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``Console.Write(``"Count of sequences is "` `                             ``+ countSeq(2, 0)); ` `    ``} ` `} ` ` `  `// This code is contributed by nitin mittal. `

## PHP

 ` ``\$n``) ` `        ``return` `0; ` ` `  `    ``// n == 1, i.e., 2 ` `    ``// bit long sequences ` `    ``if` `(``\$n` `== 1 && ``\$diff` `== 0) ` `        ``return` `2; ` `         `  `    ``if` `(``\$n` `== 1 && ``abs``(``\$diff``) == 1) ` `        ``return` `1; ` ` `  `    ``\$res` `= ``// First bit is 0 & last bit is 1 ` `            ``countSeq(``\$n` `- 1, ``\$diff` `+ 1) + ` ` `  `            ``// First and last bits are same ` `            ``2 * countSeq(``\$n` `- 1, ``\$diff``) + ` ` `  `            ``// First bit is 1 & last bit is 0 ` `            ``countSeq(``\$n` `- 1, ``\$diff` `- 1); ` ` `  `    ``return` `\$res``; ` `} ` ` `  `// Driver Code ` `\$n` `= 2; ` `echo` `"Count of sequences is "``, ` `              ``countSeq(``\$n``, 0); ` ` `  `// This code is contributed ` `// by shiv_bhakt. ` `?> `

Output:

`Count of sequences is 6`

The time complexity of above solution is exponential. If we draw the complete recursion tree, we can observer that many subproblems are solved again and again. For example, when we start from n = 4 and diff = 0, we can reach (3, 0) through multiple paths. Since same suproblems are called again, this problem has Overlapping Subprolems property. So min square sum problem has both properties (see this and this) of a Dynamic Programming problem.
Below is a memoization based solution that uses a lookup table to compute the result.

## C++

 `// A memoization based C++ program to count even ` `// length binary sequences such that the sum of ` `// first and second half bits is same ` `#include ` `using` `namespace` `std; ` `#define MAX 1000 ` ` `  `// A lookup table to store the results of subproblems ` `int` `lookup[MAX][MAX]; ` ` `  `// dif is diference between sums of first n bits ` `// and last n bits i.e., dif = (Sum of first n bits) - ` `//                              (Sum of last n bits) ` `int` `countSeqUtil(``int` `n, ``int` `dif) ` `{ ` `    ``// We can't cover diference of more ` `    ``// than n with 2n bits ` `    ``if` `(``abs``(dif) > n) ` `        ``return` `0; ` ` `  `    ``// n == 1, i.e., 2 bit long sequences ` `    ``if` `(n == 1 && dif == 0) ` `        ``return` `2; ` `    ``if` `(n == 1 && ``abs``(dif) == 1) ` `        ``return` `1; ` ` `  `    ``// Check if this subbproblem is already solved ` `    ``// n is added to dif to make sure index becomes ` `    ``// positive ` `    ``if` `(lookup[n][n+dif] != -1) ` `        ``return` `lookup[n][n+dif]; ` ` `  `    ``int` `res = ``// First bit is 0 & last bit is 1 ` `              ``countSeqUtil(n-1, dif+1) + ` ` `  `              ``// First and last bits are same ` `              ``2*countSeqUtil(n-1, dif) + ` ` `  `              ``// First bit is 1 & last bit is 0 ` `              ``countSeqUtil(n-1, dif-1); ` ` `  `    ``// Store result in lookup table and return the result ` `    ``return` `lookup[n][n+dif] = res; ` `} ` ` `  `// A Wrapper over countSeqUtil().  It mainly initializes lookup ` `// table, then calls countSeqUtil() ` `int` `countSeq(``int` `n) ` `{ ` `    ``// Initialize all entries of lookup table as not filled ` `    ``memset``(lookup, -1, ``sizeof``(lookup)); ` ` `  `    ``// call countSeqUtil() ` `    ``return` `countSeqUtil(n, 0); ` `} ` ` `  `// Driver program ` `int` `main() ` `{ ` `    ``int` `n = 2; ` `    ``cout << ``"Count of sequences is "` `         ``<< countSeq(2); ` `    ``return` `0; ` `} `

## Java

 `// A memoization based Java program to  ` `// count even length binary sequences  ` `// such that the sum of first and  ` `// second half bits is same ` `import` `java.io.*; ` ` `  `class` `GFG { ` `     `  `// A lookup table to store the results of  ` `// subproblems ` `static` `int` `lookup[][] = ``new` `int``[``1000``][``1000``]; ` ` `  `// dif is diference between sums of first  ` `// n bits and last n bits i.e.,  ` `// dif = (Sum of first n bits) - (Sum of last n bits) ` `static` `int` `countSeqUtil(``int` `n, ``int` `dif) ` `{ ` `    ``// We can't cover diference of ` `    ``// more than n with 2n bits ` `    ``if` `(Math.abs(dif) > n) ` `        ``return` `0``; ` ` `  `    ``// n == 1, i.e., 2 bit long sequences ` `    ``if` `(n == ``1` `&& dif == ``0``) ` `        ``return` `2``; ` `    ``if` `(n == ``1` `&& Math.abs(dif) == ``1``) ` `        ``return` `1``; ` ` `  `    ``// Check if this subbproblem is already ` `    ``// solved n is added to dif to make  ` `    ``// sure index becomes positive ` `    ``if` `(lookup[n][n+dif] != -``1``) ` `        ``return` `lookup[n][n+dif]; ` ` `  `    ``int` `res = ``// First bit is 0 & last bit is 1 ` `            ``countSeqUtil(n-``1``, dif+``1``) + ` ` `  `            ``// First and last bits are same ` `            ``2``*countSeqUtil(n-``1``, dif) + ` ` `  `            ``// First bit is 1 & last bit is 0 ` `            ``countSeqUtil(n-``1``, dif-``1``); ` ` `  `    ``// Store result in lookup table  ` `    ``// and return the result ` `    ``return` `lookup[n][n+dif] = res; ` `} ` ` `  `// A Wrapper over countSeqUtil(). It mainly  ` `// initializes lookup table, then calls  ` `// countSeqUtil() ` `static` `int` `countSeq(``int` `n) ` `{ ` `    ``// Initialize all entries of lookup ` `    ``// table as not filled  ` `    ``// memset(lookup, -1, sizeof(lookup)); ` `    ``for``(``int` `k = ``0``; k < lookup.length; k++) ` `    ``{ ` `        ``for``(``int` `j = ``0``; j < lookup.length; j++) ` `        ``{ ` `        ``lookup[k][j] = -``1``; ` `    ``} ` `    ``}  ` `     `  `    ``// call countSeqUtil() ` `    ``return` `countSeqUtil(n, ``0``); ` `} ` ` `  `// Driver program ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``int` `n = ``2``; ` `    ``System.out.println(``"Count of sequences is "`  `                       ``+ countSeq(``2``)); ` `} ` `} ` ` `  `// This code is contributed by Prerna Saini `

## Python3

 `#A memoization based python program to count even ` `#length binary sequences such that the sum of  ` `#first and second half bits is same ` `  `  `MAX``=``1000` ` `  `#A lookup table to store the results of subproblems ` `lookup``=``[[``0` `for` `i ``in` `range``(``MAX``)] ``for` `i ``in` `range``(``MAX``)] ` `#dif is diference between sums of first n bits ` `#and last n bits i.e., dif = (Sum of first n bits) - ` `#                             (Sum of last n bits)  ` `def` `countSeqUtil(n,dif): ` ` `  `    ``#We can't cover diference of more  ` `    ``#than n with 2n bits ` `    ``if` `abs``(dif)>n: ` `        ``return` `0` `    ``#n == 1, i.e., 2 bit long sequences ` `    ``if` `n``=``=``1` `and` `dif``=``=``0``: ` `        ``return` `2` `    ``if` `n``=``=``1` `and` `abs``(dif)``=``=``1``: ` `        ``return` `1` ` `  `    ``#Check if this subbproblem is already solved ` `    ``#n is added to dif to make sure index becomes ` `    ``#positive ` `    ``if` `lookup[n][n``+``dif]!``=``-``1``: ` `        ``return` `lookup[n][n``+``dif] ` ` `  `    ``#First bit is 0 & last bit is 1 ` `    ``#+First and last bits are same  ` `    ``#+First bit is 1 & last bit is 0 ` `    ``res``=` `(countSeqUtil(n``-``1``, dif``+``1``)``+` `          ``2``*``countSeqUtil(n``-``1``, dif)``+` `          ``countSeqUtil(n``-``1``, dif``-``1``)) ` `          `  `         `  `    ``#Store result in lookup table and return the result  ` `    ``lookup[n][n``+``dif]``=``res ` `    ``return` `res ` ` `  `#A Wrapper over countSeqUtil(). It mainly initializes lookup  ` `#table, then calls countSeqUtil()  ` `def` `countSeq(n): ` `    ``#Initialize all entries of lookup table as not filled  ` `    ``global` `lookup ` `    ``lookup``=``[[``-``1` `for` `i ``in` `range``(``MAX``)] ``for` `i ``in` `range``(``MAX``)] ` `    ``#call countSeqUtil() ` `    ``res``=``countSeqUtil(n,``0``) ` `    ``return` `res ` ` `  `#Driver Code ` `if` `__name__``=``=``'__main__'``: ` `    ``n``=``2` `    ``print``(``'Count of Sequences is '``,countSeq(n)) ` `     `  `#This Code is contributed by sahilshelangia `

## C#

 `// A memoization based C# program to  ` `// count even length binary sequences  ` `// such that the sum of first and  ` `// second half bits is same  ` ` `  `using` `System; ` `class` `GFG {  ` `     `  `// A lookup table to store the results of  ` `// subproblems  ` `static` `int` `[,]lookup = ``new` `int``[1000,1000];  ` ` `  `// dif is diference between sums of first  ` `// n bits and last n bits i.e.,  ` `// dif = (Sum of first n bits) - (Sum of last n bits)  ` `static` `int` `countSeqUtil(``int` `n, ``int` `dif)  ` `{  ` `    ``// We can't cover diference of  ` `    ``// more than n with 2n bits  ` `    ``if` `(Math.Abs(dif) > n)  ` `        ``return` `0;  ` ` `  `    ``// n == 1, i.e., 2 bit long sequences  ` `    ``if` `(n == 1 && dif == 0)  ` `        ``return` `2;  ` `    ``if` `(n == 1 && Math.Abs(dif) == 1)  ` `        ``return` `1;  ` ` `  `    ``// Check if this subbproblem is already  ` `    ``// solved n is added to dif to make  ` `    ``// sure index becomes positive  ` `    ``if` `(lookup[n,n+dif] != -1)  ` `        ``return` `lookup[n,n+dif];  ` ` `  `    ``int` `res = ``// First bit is 0 & last bit is 1  ` `            ``countSeqUtil(n-1, dif+1) +  ` ` `  `            ``// First and last bits are same  ` `            ``2*countSeqUtil(n-1, dif) +  ` ` `  `            ``// First bit is 1 & last bit is 0  ` `            ``countSeqUtil(n-1, dif-1);  ` ` `  `    ``// Store result in lookup table  ` `    ``// and return the result  ` `    ``return` `lookup[n,n+dif] = res;  ` `}  ` ` `  `// A Wrapper over countSeqUtil(). It mainly  ` `// initializes lookup table, then calls  ` `// countSeqUtil()  ` `static` `int` `countSeq(``int` `n)  ` `{  ` `    ``// Initialize all entries of lookup  ` `    ``// table as not filled  ` `    ``// memset(lookup, -1, sizeof(lookup));  ` `    ``for``(``int` `k = 0; k < lookup.GetLength(0); k++)  ` `    ``{  ` `        ``for``(``int` `j = 0; j < lookup.GetLength(1); j++)  ` `        ``{  ` `        ``lookup[k,j] = -1;  ` `    ``}  ` `    ``}  ` `     `  `    ``// call countSeqUtil()  ` `    ``return` `countSeqUtil(n, 0);  ` `}  ` ` `  `// Driver program  ` `public` `static` `void` `Main()  ` `{  ` `    ``int` `n = 2;  ` `    ``Console.WriteLine(``"Count of sequences is "` `                    ``+ countSeq(n));  ` `}  ` `}  ` ` `  `// This code is contributed by Ryuga  `

## PHP

 ` ``\$n``) ` `        ``return` `0; ` ` `  `    ``// n == 1, i.e., 2 bit long sequences ` `    ``if` `(``\$n` `== 1 && ``\$dif` `== 0) ` `        ``return` `2; ` `    ``if` `(``\$n` `== 1 && ``abs``(``\$dif``) == 1) ` `        ``return` `1; ` ` `  `    ``// Check if this subbproblem is already solved ` `    ``// n is added to dif to make sure index becomes ` `    ``// positive ` `    ``if` `(``\$lookup``[``\$n``][``\$n` `+ ``\$dif``] != -1) ` `        ``return` `\$lookup``[``\$n``][``\$n` `+ ``\$dif``]; ` ` `  `    ``\$res` `= ``// First bit is 0 & last bit is 1 ` `            ``countSeqUtil(``\$n` `- 1, ``\$dif` `+ 1) + ` ` `  `            ``// First and last bits are same ` `            ``2 * countSeqUtil(``\$n` `- 1, ``\$dif``) + ` ` `  `            ``// First bit is 1 & last bit is 0 ` `            ``countSeqUtil(``\$n` `- 1, ``\$dif` `- 1); ` ` `  `    ``// Store result in lookup table and return the result ` `    ``return` `\$lookup``[``\$n``][``\$n` `+ ``\$dif``] = ``\$res``; ` `} ` ` `  `// A Wrapper over countSeqUtil(). It mainly  ` `// initializes lookup table, then calls countSeqUtil() ` `function` `countSeq(``\$n``) ` `{ ` `    ``// Initialize all entries of  ` `    ``// lookup table as not filled ` ` `  `    ``// call countSeqUtil() ` `    ``return` `countSeqUtil(``\$n``, 0); ` `} ` ` `  `// Driver Code ` `\$n` `= 2; ` `echo` `"Count of sequences is "` `. countSeq(``\$n``); ` ` `  `// This code is contributed by mits ` `?> `

Output:

`Count of sequences is 6`

Worst case time complexity of this solution is O(n2) as diff can be maximum n.

Below is O(n) solution for the same.

```Number of n-bit strings with 0 ones = nC0
Number of n-bit strings with 1 ones = nC1
...
Number of n-bit strings with k ones = nCk
...
Number of n-bit strings with n ones = nCn ```

So, we can get required result using below

```No. of 2*n bit strings such that first n bits have 0 ones &
last n bits have 0 ones = nC0 * nC0

No. of 2*n bit strings such that first n bits have 1 ones &
last n bits have 1 ones = nC1 * nC1

....

and so on.

Result = nC0*nC0 + nC1*nC1 + ... + nCn*nCn
= &Sum;(nCk)2
0 <= k <= n ```

Below is the implementation based on above idea.

## C++

 `// A O(n) C++ program to count even length binary sequences ` `// such that the sum of first and second half bits is same ` `#include ` `using` `namespace` `std; ` ` `  `// Returns the count of even length sequences ` `int` `countSeq(``int` `n) ` `{ ` `    ``int` `nCr=1, res = 1; ` ` `  `    ``// Calculate SUM ((nCr)^2) ` `    ``for` `(``int` `r = 1; r<=n ; r++) ` `    ``{ ` `        ``// Compute nCr using nC(r-1) ` `        ``// nCr/nC(r-1) = (n+1-r)/r; ` `        ``nCr = (nCr * (n+1-r))/r;    ` ` `  `        ``res += nCr*nCr; ` `    ``} ` ` `  `    ``return` `res; ` `} ` ` `  `// Driver program ` `int` `main() ` `{ ` `    ``int` `n = 2; ` `    ``cout << ``"Count of sequences is "` `         ``<< countSeq(n); ` `    ``return` `0; ` `} `

## Java

 `// Java program to find remaining ` `// chocolates after k iterations ` `class` `GFG ` `{ ` `// A O(n) C++ program to count ` `// even length binary sequences ` `// such that the sum of first ` `// and second half bits is same ` ` `  `// Returns the count of  ` `// even length sequences ` `static` `int` `countSeq(``int` `n) ` `{ ` `    ``int` `nCr = ``1``, res = ``1``; ` ` `  `    ``// Calculate SUM ((nCr)^2) ` `    ``for` `(``int` `r = ``1``; r <= n ; r++) ` `    ``{ ` `        ``// Compute nCr using nC(r-1) ` `        ``// nCr/nC(r-1) = (n+1-r)/r; ` `        ``nCr = (nCr * (n + ``1` `- r)) / r;  ` ` `  `        ``res += nCr * nCr; ` `    ``} ` ` `  `    ``return` `res; ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String args[]) ` `{ ` `    ``int` `n = ``2``; ` `    ``System.out.print(``"Count of sequences is "``); ` `    ``System.out.println(countSeq(n)); ` `} ` `} ` ` `  `// This code is contributed ` `// by Shivi_Aggarwal  `

## Python

 `# A Python program to count  ` `# even length binary sequences  ` `# such that the sum of first  ` `# and second half bits is same  ` ` `  `# Returns the count of  ` `# even length sequences  ` `def` `countSeq(n):  ` ` `  `    ``nCr ``=` `1` `    ``res ``=` `1` ` `  `    ``# Calculate SUM ((nCr)^2)  ` `    ``for` `r ``in` `range``(``1``, n ``+` `1``):  ` `     `  `        ``# Compute nCr using nC(r-1)  ` `        ``# nCr/nC(r-1) = (n+1-r)/r;  ` `        ``nCr ``=` `(nCr ``*` `(n ``+` `1` `-` `r)) ``/` `r;  ` ` `  `        ``res ``+``=` `nCr ``*` `nCr;  ` ` `  `    ``return` `res;  ` ` `  `# Driver Code ` `n ``=` `2` `print``(``"Count of sequences is"``), ` `print` `(``int``(countSeq(n))) ` `     `  `# This code is contributed ` `# by Shivi_Aggarwal  `

## C#

 `// C# program to find remaining ` `// chocolates after k iteration ` `using` `System; ` ` `  `class` `GFG { ` `     `  `// A O(n) C# program to count ` `// even length binary sequences ` `// such that the sum of first ` `// and second half bits is same ` ` `  `// Returns the count of  ` `// even length sequences ` `static` `int` `countSeq(``int` `n) ` `{ ` `    ``int` `nCr = 1, res = 1; ` ` `  `    ``// Calculate SUM ((nCr)^2) ` `    ``for` `(``int` `r = 1; r <= n ; r++) ` `    ``{ ` `        ``// Compute nCr using nC(r-1) ` `        ``// nCr/nC(r-1) = (n+1-r)/r; ` `        ``nCr = (nCr * (n + 1 - r)) / r;  ` ` `  `        ``res += nCr * nCr; ` `    ``} ` ` `  `    ``return` `res; ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main() ` `{ ` `    ``int` `n = 2; ` `    ``Console.Write(``"Count of sequences is "``); ` `    ``Console.Write(countSeq(n)); ` `} ` `} ` ` `  `// This code is contributed  ` `// by ChitraNayal `

## PHP

 ` `

Output:

`Count of sequences is 6`

Thanks to d_geeks, Saurabh Jain and Mysterious Mind for suggesting above O(n) solution.

## tags:

Dynamic Programming Dynamic Programming