Tutorialspoint.dev

Magnet Puzzle | Backtracking-9

The puzzle game Magnets involves placing a set of domino-shaped magnets (or electrets or other polarized objects) in a subset of slots on a board so as to satisfy a set of constraints. For example, the puzzle on the left has the solution shown on the right:

Each slot contains either a blank entry (indicated by ‘x’s), or a “magnet” with a positive and negative end. The numbers along the left and top sides show the numbers of ‘+’ squares in particular rows or columns. Those along the right and bottom show the number of ‘-’ signs in particular rows or columns. Rows and columns without a number at one or both ends are unconstrained as to the number of ‘+’ or ‘-’ signs, depending on which number is not present. In addition to fulfilling these numerical constraints, a puzzle solution must also satisfy the constraint that no two orthogonally touching squares may have the same sign (diagonally joined squares are not constrained).

You are given top[], bottom[], left[], right[] arrays indicates the count of + or – along the top(+), bottom(-), left(+) and right(-) edges respectively. Values of -1 indicate any number of + and – signs. Also given matrix rules[][] contain any one T, B, L or R characters. For a vertical slot in the board, T indicates its top end and B indicates the bottom end. For a horizontal slot in the board, L indicates left end and R indicates the right end.

Examples:

Input : M = 5, N = 6
        top[] = { 1, -1, -1, 2, 1, -1 }
        bottom[] = { 2, -1, -1, 2, -1, 3 }
        left[] = { 2, 3, -1, -1, -1 }
        right[] = { -1, -1, -1, 1, -1 }
        rules[][] = { { L, R, L, R, T, T },
                      { L, R, L, R, B, B },
                      { T, T, T, T, L, R },
                      { B, B, B, B, T, T },
                      { L, R, L, R, B, B }};
Output : + - + - X - 
         - + - + X + 
         X X + - + - 
         X X - + X + 
         - + X X X - 

Input : M = 4, N = 3
        top[] = { 2, -1, -1 }
        bottom[] = { -1, -1, 2 }
        left[] = { -1, -1, 2, -1 }
        right[] = { 0, -1, -1, -1 }
        rules[][] = { { T, T, T },
                      { B, B, B },
                      { T, L, R },
                      { B, L, R } };
Output : + X +
         – X –
        + – +
        – + –

We can solve this problem using Backtracking.

Source :https://people.eecs.berkeley.edu/~hilfingr/programming-contest/f2012-contest.pdf

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



This article is attributed to GeeksforGeeks.org

You Might Also Like

leave a comment

code

0 Comments

load comments

Subscribe to Our Newsletter